REDBANK, NORTH RICHMOND SANDSTONE ARCH SUBDIVISION WORKS PROPOSED LOT, ROAD AND DRAINAGE WORKS COUNCIL REFERENCE: DA 0430/19

ted: August 21, 2020 File Name: J:\110185 - Redbank North Richmond Residential Precincts\12 - Stage 1 DA\CD\CC\SANDSTONE ARCH\11018512CC200.dw

LOCALITY SKETCH

Prepared By: J. WYNDHAMPRINCE CONSULTING CIVIL INFRASTRUCTURE ENGINEERS & PROJECT MANAGERS PO Box 4366 PENRITH WESTFIELD NSW 2750 P 02 4720 3300

W <u>www.jwprince.com.au</u> **E** jwp@jwprince.com.au

ISSUED FOR CONS

WORK AS EXECUTED SHOWN IN RED SIGNATURE PETER ROBERT WARWICK REGISTERED LAND SURVEYOR VINCE MORGAN SURVEYORS PTY LTD DATE: 20/12/20 REF: 16800-16

> a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.

BDC3367

SUBDIVISION WORKS CERTIFICATE

Certificate No. Date of Issue Issuing Officer

20130299SW51 28/08/2020 D. Restr

Accreditation No.

These plans/specifications form part of the certificate issued 28th of August 2020

STRUCTION APPROVA

PLAN No. 11018512/CC200 2

FILE No. 11018512CC200

GENERAL NOTES

- 1. ALL WORKS ARE TO BE IN ACCORDANCE WITH HAWKESBURY CITY COUNCIL'S DEVELOPMENT CONTROL PLAN 2009, APPENDIX E "CIVIL WORKS SPECIFICATIONS", PART I, II & III.
- 2. EXISTING SURVEY MARKS SHALL BE RETAINED AT ALL TIMES. WHERE RETENTION IS NOT POSSIBLE THE SUPERINTENDENT MUST BE NOTIFIED AND CONSENT RECEIVED PRIOR TO THEIR REMOVAL.
- 3. THE CONTRACTOR MUST OBTAIN CURRENT DIAL BEFORE YOU DIG UTILITIES PLAN BY DIALING PH 1100, LOCATE AND LEVEL ALL EXISTING SERVICES PRIOR TO COMMENCING CONSTRUCTION, AND MAKE ARRANGEMENTS WITH THE RELEVANT AUTHORITY TO RELOCATE OR ADJUST IF NECESSARY.
- 4. THE CONTRACTOR SHALL NOT ENTER UPON NOR DO ANY WORK WITHIN ADJACENT LANDS WITHOUT THE WRITTEN PERMISSION OF THE OWNERS, PROVIDED BY PRINCIPAL
- 5. THE CONTRACTOR SHALL MAINTAIN SERVICES AND ALL WEATHER ACCESS AT ALL TIMES TO ADJOINING PROPERTIES.
- 6. FILLING IS TO BE FROM A NOMINATED SOURCE, OF SOUND CLEAN MATERIAL, FREE FROM LARGE ROCK, STUMPS, CONTAMINATED MATTER, INDUSTRIAL AND BUILDING WASTE, ORGANIC MATTER AND OTHER DEBRIS. PLACING OF FILLING ON THE PREPARED AREAS SHALL NOT COMMENCE UNTIL THE APPROVAL TO DO SO HAS BEEN OBTAINED FROM THE COUNCIL.
- 7. SITE FILL AREAS: THE CONTRACTOR SHALL TAKE LEVELS OF EXISTING SURFACE AFTER STRIPPING TOPSOIL AND PRIOR TO COMMENCING FILL OPERATIONS.
- 8. ALL SITE FILLING TO BE COMPACTED TO 98% STANDARD COMPACTION AND SHALL BE CONTROLLED BY A REGISTERED SOIL LABORATORY IN ACCORDANCE WITH COUNCILS' DEVELOPMENT CONTROL PLAN 2009. APPENDIX E "CIVIL WORKS SPECIFICATIONS" PART II
- 9. ALL SITE REGRADING AREAS SHALL BE GRADED AT A MINIMUM 1% TO THE ENGINEERS' REQUIREMENTS.
- 10. SURPLUS EXCAVATED MATERIAL SHALL BE PLACED WHERE DIRECTED BY THE SUPERINTENDENT.
- 11. VEHICULAR CROSSINGS SHALL BE CONSTRUCTED IN KERB AND GUTTER WHERE SHOWN.
- 12. PRAM CROSSINGS SHALL BE CONSTRUCTED IN KERB AND GUTTER IN ACCORDANCE WITH COUNCIL'S STANDARD DRAWING.
- 13. ALL NEW WORKS SHALL MAKE A SMOOTH JUNCTION WITH EXISTING CONDITIONS.
- 14. DIMENSIONS OF ANY DETAIL SHALL NOT BE SCALED DIMENSIONS, IF IN DOUBT, SHALL BE VERIFIED BY THE SUPERINTENDENT.
- 15. ALL CONSTRUCTION AND RESTORATION WORK ON COUNCIL'S ROAD AND FOOTPATH AREA ARE TO BE CARRIED OUT IN ACCORDANCE WITH THE APPROVED DRAWINGS AND COUNCIL'S STANDARD SPECIFICATIONS.
- 16. NO FILL MATERIAL IS TO BE IMPORTED TO THE SITE. EXISTING STOCKPILES AND MATERIAL WITHIN THE REDBANK SITE ARE TO BE USED FOR THE EARTHWORKS.

VINCE MORGAN (SURVEYORS) PTY. LTD. CONSULTING SURVEYORS

Survey By:

P.O. Box 227, Penrith. 2751

Ph. (02) 4721 5293

REF: NORTH RICHMOND - DETAIL SURVEY UPDATE 15 MARCH 2017, 5 MAY 2017, 11 DECEMBER 2019 AND 27 MARCH 2020

PAVEMENT NOTES

1. PAVEMENT TO BE SUPPLIED AND LAID IN ACCORDANCE WITH COUNCIL SPECIFICATIONS.

2. PROVIDE 100mm MINIMUM TOPSOIL & SEED TO EMBANKMENTS.

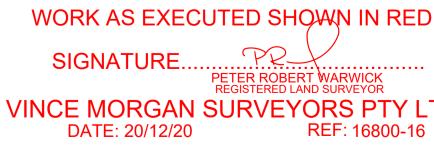
3. SUBGRADE & PAVEMENT MATERIALS TO BE COMPACTED TO FOLLOWING MINIMUM DRY DENSITY RATIOS (AS 1289-5.4.1-1993):

a) BASECOURSE 98% MODIFIED b) SUB-BASE 98% MODIFIED a. No works are to occur outside c) SUBGRADE 100% STANDARD of the property boundary unless written approval from Hawkesbury Council has be received.

> b. All landscaping requires separate formal approval by Council or an Accredited Certifier prior to commencement of landscaping works.

COMPACTION SPECIFICATION

- 1) WITHIN FULL WIDTH OF ROAD CARRIAGEWAY PLUS 1.0M EITHER SIDE a) ALL SUBGRADE SHALL BE CARRIED UP IN HORIZONTAL LAYERS, OF NOT MORE THAN 300MM THICK LOOSE MEASUREMENT, IF REQUIRED, AND SHALL HAVE EACH LAYER COMPACTED TO A 100% STANDARD DRY DENSITY RATIO DETERMINED IN ACCORDANCE WITH AS 1289 5.4.1-2007 "COMPACTION CONTROL TEST - DRY DENSITY RATIO, MOISTURE VARIATION AND MOISTURE RATIO",
- b) ALL SUB-BASE COURSE SHALL BE PLACED AND COMPACTED TO AT LEAST 98% MODIFIED DRY DENSITY RATIO DETERMINED IN ACCORDANCE WITH AS 1289 5.4.1-2007 "COMPACTION CONTROL TEST - DRY DENSITY RATIO, MOISTURE VARIATION AND MOISTURE RATIO".
- c) ALL BASE COURSE SHALL BE PLACED AND COMPACTED TO AT LEAST 98% MODIFIED DRY DENSITY RATIO DETERMINED IN ACCORDANCE WITH AS 1289 5.4.1-2007 "COMPACTION CONTROL TEST - DRY DENSITY RATIO, MOISTURE VARIATION AND MOISTURE RATIO".
- d) ALL ROAD CROSSINGS TO BE PROVIDED IN EXISTING ROADS, THE TRENCHES SHALL BE BACKFILLED AND COMPACTED WITH A SAND/CEMENT BLEND 20:1 MIX TO SUBGRADE LEVEL, THEN DGB20 TO WITHIN 50MM OF THE ROAD SURFACE, OR IF REQUIRED TO A HIGHER SPECIFICATION BY A SPECIFIC UTILITY AUTHORITY, TO THAT SPECIFICATION AS INSTRUCTED BY THE PROJECT SUPERINTENDENT
- e) ALL TESTS TO BE TAKEN EVERY 50 METRE LENGTH OF PAVEMENT, TAKEN 1.0M FROM ALTERNATE SIDES OF PAVEMENT, BY A NATA REGISTERED LABORATORY.
- f) THESE AND ALL OTHER REQUIREMENTS TO BE COMPLIED WITH. TO BE READ IN CONJUNCTION WITH HAWKESBURY CITY COUNCIL DCP PART II - CONSTRUCTION SPECIFICATION.
- q) ANY ERRORS, OMISSIONS OR QUERIES TO BE SUBMITTED TO THE PROJECT SUPERINTENDENT FOR INSTRUCTION.
- 2) WITHIN FULL WIDTH OF ROAD FOOTPATH / VERGE EXCLUDING 1.0M BESIDE ROAD CARRIAGEWAY EITHER SIDE -
- a) ALL FILL INCLUDING STABILISED SAND, SHALL BE CARRIED OUT IN HORIZONTAL LAYERS, EXTENDING THE FULL WIDTH OF THE AREA BEING FILLED, OF NOT MORE THAN 300MM CONSOLIDATED THICKNESS EACH LAYER SHALL BE COMPACTED TO AT LEAST 98% STANDARD DRY DENSITY RATIO DETERMINED IN ACCORDANCE WITH AS1289 5.4.1-2007 "COMPACTION CONTROL TEST - DRY DENSITY RATIO, MOISTURE VARIATION AND MOISTURE RATIO".
- b) ALL TESTS TO BE TAKEN EVERY 50 METRE LENGTH OF ROAD FOOTPATH / VERGE ON CENTRELINE, BY A NATA REGISTERED LABORATORY.
- c) ALL TRENCHES TO BE BACKFILLED TO HAVE EQUAL COMPACTION (+2%/-0% VARIATION) AS THE SURROUNDING ROAD FOOTPATH / VERGE.
- d) ALL TRENCH TESTS TO BE TAKEN IN EACH 300MM LAYER AND EVERY 50 METRES OF TRENCH, BY A NATA REGISTERED LABORATORY.
- e) THESE AND ALL OTHER REQUIREMENTS TO BE COMPLIED WITH, TO BE READ IN CONJUNCTION WITH HAWKESBURY CITY COUNCIL DCP PART II - CONSTRUCTION SPECIFICATION.
- f) ANY ERRORS, OMISSIONS OR QUERIES TO BE SUBMITTED TO THE PROJECT SUPERINTENDENT FOR INSTRUCTION.
- 3) WITHIN LOTS -


ALL FILL SHALL BE CARRIED OUT IN HORIZONTAL LAYERS, EXTENDING THE FULL WIDTH OF THE AREA BEING FILLED, OF NOT MORE THAN 300MM CONSOLIDATED THICKNESS. EACH LAYER SHALL BE COMPACTED TO A DENSITY OF AT LEAST 98% STANDARD DRY DENSITY RATIO DETERMINED IN ACCORDANCE WITH AS1289 5.4.1-2007 "COMPACTION CONTROL TEST - DRY DENSITY RATIO, MOISTURE VARIATION AND MOISTURE RATIO". THE DEPTHS OF FILL AND THE COMPACTION THEREOF ARE TO BE VERIFIED BY THE SUBMISSION OF COMPACTION CERTIFICATES AND A PLAN SHOWING CONTOURED DEPTHS OF FILL IN RELATION TO LOT BOUNDARIES.

- b) ALL TESTS TO BE A MINIMUM OF TWO COMPACTION TESTS PER LOT PER LAYER ARE TO BE CARRIED OUT, BY A NATA REGISTERED LABORATORY.
- c) ALL TRENCHES TO BE BACKFILLED TO HAVE EQUAL COMPACTION (+2%/-0% VARIATION) AS THE SURROUNDING LOTS.
- d) ALL TRENCH TESTS TO BE TAKEN IN EACH 300MM LAYER AND EVERY 50 METRES OF TRENCH, BY A NATA REGISTERED LABORATORY.
- e) THESE AND ALL OTHER REQUIREMENTS TO BE COMPLIED WITH, TO BE READ IN CONJUNCTION WITH HAWKESBURY CITY COUNCIL DCP PART II - CONSTRUCTION SPECIFICATION.
- f) ANY ERRORS, OMISSIONS OR QUERIES TO BE SUBMITTED TO THE PROJECT SUPERINTENDENT FOR INSTRUCTION.

4) EARTHWORKS AND SITE PREPARATION TO BE UNDERTAKEN IN ACCORDANCE WITH GEOTECHNICAL INVESTIGATION REPORT PREPARED BY GEOTECHNIQUE, REFERENCE 12261/22-AA DATED 11 DECEMBER 2018.

- 5) EARTHWORKS CUT, FILL AND GRADING
- ALL EARTHWORKS AND FILLING ON THE SITE MUST COMPLY WITH THE FOLLOWING: a) TOPSOIL SHALL ONLY BE STRIPPED FROM APPROVED AREAS AND SHALL BE STOCKPILED FOR
- RE-USE DURING SITE REHABILITATION AND LANDSCAPING. ALL DISTURBED AREAS ARE TO BE STABILISED/REVEGETATED AS SOON AS PRACTICABLE AFTER THE COMPLETION OF FILLING WORKS. TOPSOIL SHALL BE USED IN DISTURBED AREAS
- AS FOLLOWS: (i) A MINIMUM 300MM SURFACE LAYER OF TOPSOIL IN OPEN SPACE AREAS. (ii) A MINIMUM 100MM SURFACE LAYER OF TOPSOIL ACROSS URBAN LOTS, AND (iii) A MINIMUM 100MM SURFACE LAYER OF TOPSOIL ACROSS ROAD VERGES.
- WHERE THE MAXIMUM GRADE OF THE FILL BATTER EXCEEDS A RATIO OF THREE HORIZONTAL c) TO ONE VERTICAL (3:1), RETAINING WALLS, STONE FLAGGING OR TERRACING SHALL BE CONSTRUCTED;
- d) ALL FILL WITHIN THE SITE SHALL BE PLACED IN LAYERS NOT EXCEEDING 300MM THICKNESS AND COMPACTED TO ACHIEVE A MINIMUM DRY DENSITY RATIO OF 98% WHEN TESTED IN ACCORDANCE WITH AUSTRALIAN STANDARD AS1289 'METHODS OF TESTING SOILS FOR
- ENGINEERING PURPOSES' UNLESS OTHERWISE SPECIFIED. e) ANY FILL MATERIAL SHALL COMPRISE UNCONTAMINATED VIRGIN EXCAVATED NATURAL MATERIAL (VENM) OR EXCAVATED NATURAL MATERIAL (ENM).

6) EARTHWORKS IS TO BE CARRIED OUT IN STAGES, TO MINIMISE THE DISTURBED AREA AT ANY TIME. A POSSIBLE EARTHWORKS STAGING SHOWN ON SOIL AND WATER PLANS.

4								
۲ ۷								
۲,								
ĥ								
Ϊ,								
-								
۷	2	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20	
ני	1	ISSUE 80% CLIENT COMMENTS	MP	NDW	RO	MS	20/07/20	P 02 4720 3300
10		AMENDMENT	DES	DRN	CKD	APR	DATE	P 02 4720 5500

CIVIL PLAN INDEX	
PLAN NAME	
COVER SHEET	

11018512/CC200	COVER SHEET	2
11018512/CC201	GENERAL NOTES, INDEX & LEGEND	2
11018512/CC202	SITE LAYOUT PLAN	2
11018512/CC203	ENGINEERING PLAN	2
11018512/CC204	CUT & FILL PLAN	2
11018512/CC205	SITE SECTIONS	2
11018512/CC206	ROAD 43 LONGITUDINAL SECTION	2
11018512/CC207	ROAD 44 & 401 LONGITUDINAL SECTION	2
11018512/CC208	ROAD 43 & 401 CROSS SECTION	2
11018512/CC209	ROAD 44 CROSS SECTION	2
11018512/CC210	KERB RETURNS	2
11018512/CC211	CATCHMENT PLAN & PIT SCHEDULE	2
11018512/CC212	DRAINAGE LONGITUDINAL SECTIONS	2
11018512/CC213	DRAINAGE LONGITUDINAL SECTIONS	2
11018512/CC214	DRAINAGE CALCULATIONS	2
11018512/CC215	DRAINAGE CALCULATIONS	2
11018512/CC216	RETAINING WALL PLAN & DETAIL	2
11018512/CC217	RETAINING WALL LONGITUDINAL SECTION	2
11018512/CC218	SOIL & WATER MANAGEMENT PLAN	2
11018512/CC219	SOIL & WATER MANAGEMENT DETAILS	2
11018512/CC220	SOIL & WATER MANAGEMENT NOTES	2
11018512/CC221	SEDIMENT BASIN CALCULATIONS	1
11018512/CC222	SIGNAGE AND LINEMARKING PLAN	1
11018512/CC223	TURNING PATHS	1

STORMWATER NOTES

- 1. STORMWATER DESIGN CRITERIA: AVERAGE RECURRENCE INTERVAL: 1:100 MAJOR SYSTEM
- 1:5 MINOR SYSTEM

PLAN NO.

- ALL INTERNAL WORKS WITHIN PROPERTY BOUNDARIES ARE TO COMPLY WITH THE 2 REQUIREMENTS OF AS 3500 3.1 (1998) AND AS/NZS 3500 3.2 (1998).
- CARE IS TO BE TAKEN WITH LEVELS OF STORMWATER LINES. GRADES SHOWN ARE NOT TO BE REDUCED WITHOUT APPROVAL.
- GRATES AND COVERS SHALL CONFORM TO AS 3996.
- 5 AT ALL TIMES DURING CONSTRUCTION OF STORMWATER PITS, ADEQUATE SAFETY PROCEDURES SHALL BE TAKEN TO ENSURE AGAINST THE POSSIBILITY OF PERSONNEL FALLING DOWN PITS.
- 6. ALL DRAINAGE LINES THROUGH LOTS SHALL BE CONTAINED WITHIN THE FOLLOWING EASEMENTS: -
- 1.2m WIDE FOR PIPELINE < 225Ø TO BE CREATED. a) 2.5m WIDE FOR PIPELINE ≥ 300Ø TO BE CREATED
- STREET DRAINS REFER TO COUNCILS DESIGN GUIDELINES SUBDIVISION/ DEVELOPMENTS.
- DRAINAGE LINES UNDER ROADS SHALL BE BACKFILLED WITH NON-COHESIVE SAND AND HAVE 3m OF SUBSOIL DRAIN WRAPPED IN APPROVED FILTER SOCK, DISCHARGING INTO DOWN STREAM PITS. FOR PIPELINES GREATER THAN 525Ø, SUBSOIL DRAIN SHALL BE PROVIDED ON BOTH SIDES OF THE TRENCH.
- ALL STORMWATER PIPES WITHIN ROADS TO BE REINFORCED CONCRETE PIPE (RRJ) CLASS 2 UNLESS OTHERWISE INDICATED.
- 10. ALL INTERALLOTMENT DRAINAGE LINES SHALL BE LAID AT A MINIMUM GRADE OF 1% UNLESS OTHERWISE INDICATED.
- 11. DRAINAGE LINES ON PLANS ARE DIAGRAMMATIC ONLY AND PIPE CENTRELINES SHALL ENTER AND EXIT PITS AT THE CENTRE OF THE RESPECTIVE PIT WALLS.
- 12. STEP IRONS REQUIRED WHERE THE PIT EXCEEDS 1200 IN DEPTH. REFER TO COUNCIL DRAWING SD41
- WHERE GRADES EXCEED 14.0%, BULKHEADS TO BE PROVIDED IN ACCORDANCE WITH SECTION 5.12 OF COUNCIL'S CIVIL WORKS SPECIFICATION PART 2 CONSTRUCTION.
- 14. SUBSOIL DRAIN TO BE RUN BOTH SIDE OF ROAD WITH CAPPED FLUSH POINTS AND CONNECTED TO NEAREST STORMWATER PIT.
- 15. ALL PIT GRATES TO HAVE LOCKING CLIP.
- 16. ALL STORMWATER PIPES WITHIN THE ROAD RESERVE AND OPEN SPACE TO BE INSTALLED TO HS3 STANDARD IN ACCORDANCE WITH AS3725 - DESIGN FOR INSTALLATION OF BURIED CONCRETE PIPES.
- 17. BACKFILL OF ALL TRENCHES INCLUDING SEWER THAT IS WITHIN THE ZONE OF INFLUENCE OF THE PAVEMENT SHALL BE STABILISED SAND OR SUITABLE BACKFILL COMPACTED 98% STANDARD.
- 18. THE STORMWATER DESIGN IS IN ACCORDANCE WITH THE 'STORMWATER MANAGEMENT STRATEGY: YEOMANS PRECINCT' PREPARED BY J WYNDHAM PRINCE AND DATED APRIL 2017.
- 19. ALL DRAINAGE PITS TO BE BENCHED WITH CONCRETE TO PREVENT PON.DING OF WATER

ORS PTY LTD REF: 16800-16		CLIENT:	ISSUE
MPRINCE CONSULTING CIVIL INFRASTRUCTURE ENGINEERS & PROJECT MANAGERS	azimuth: Datum:	NORTH RICHMOND	S REDBA
PO Box 4366 PENRITH WESTFIELD NSW 2750 F 02 4720 3399 W <u>www.jwprince.com.au</u> E jwp@jwprince.com.au	ORIGIN:	THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE.	GENE

DE

EXTENT OF W

REV

KERB & GUTT

KERB AND TO

GUIDE POSTS

EXTENT OF F EXTENT OF C

CONTOURS

CATCH DRAIN

ELECTRICITY

STORMWATE LINE AND PIT PROPOSED E 1:100YR ARI F

TREES TO BE

TREES TO BE

RETAINING W

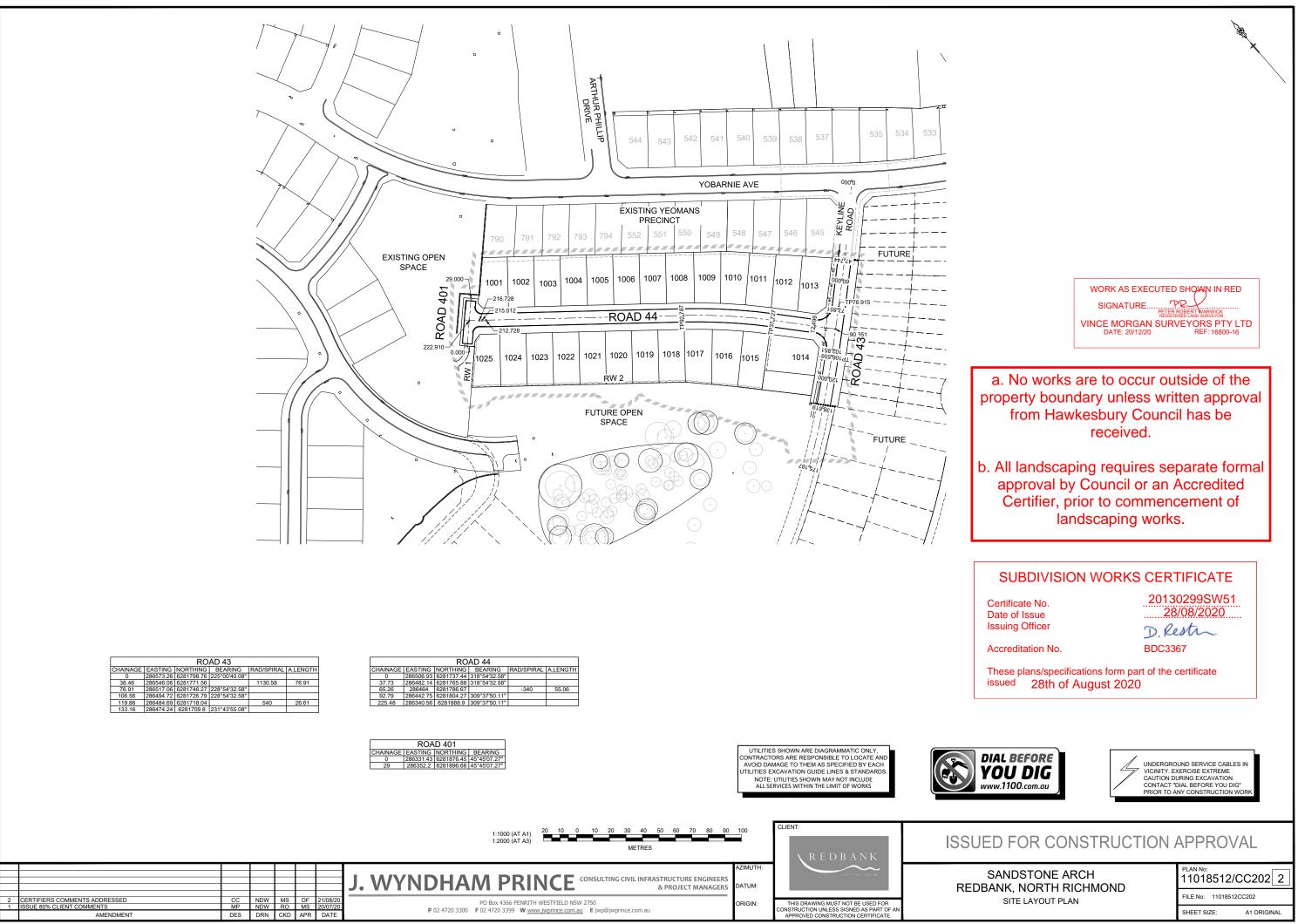
STREET NAME

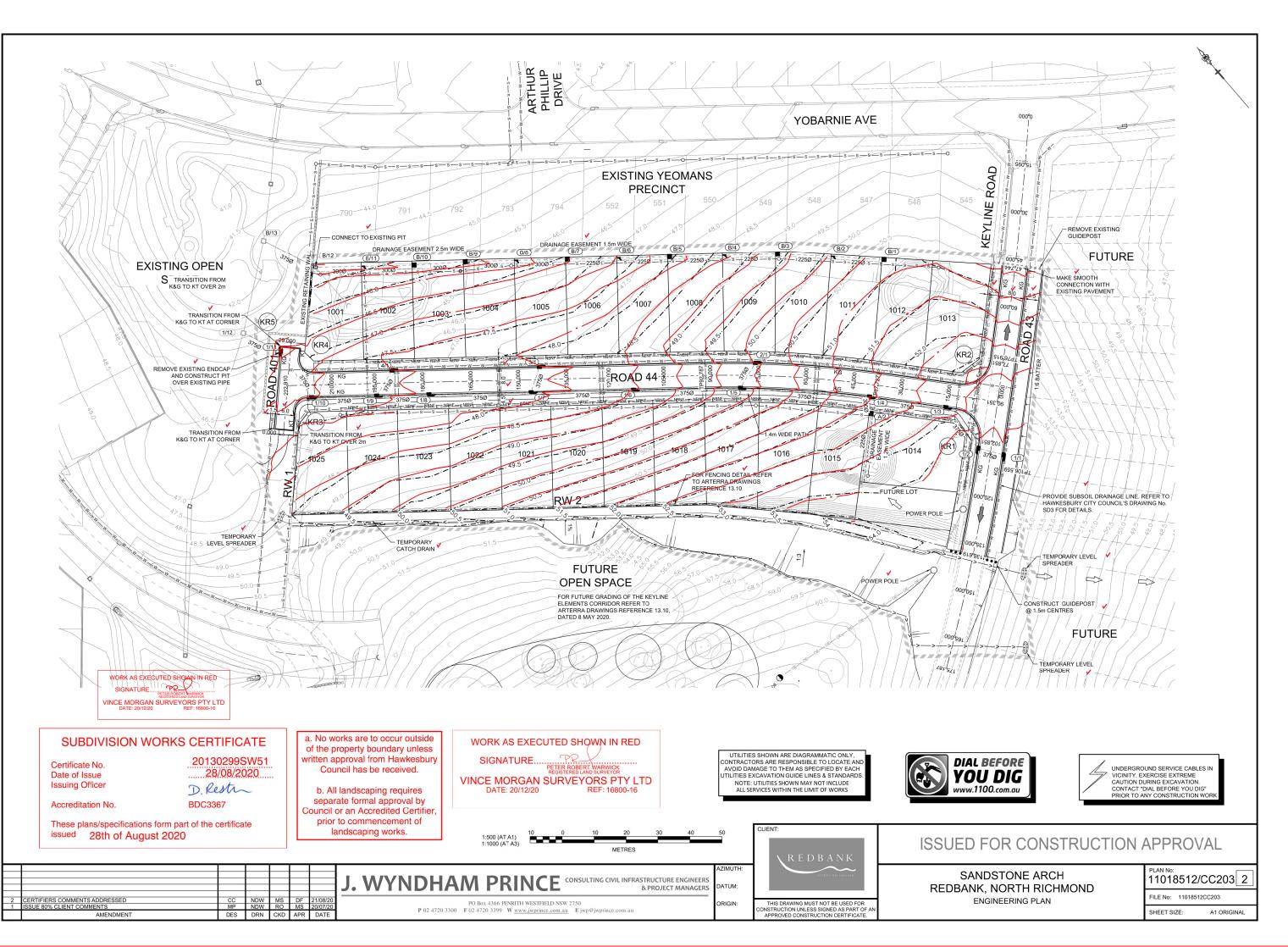
ABOVE GROU

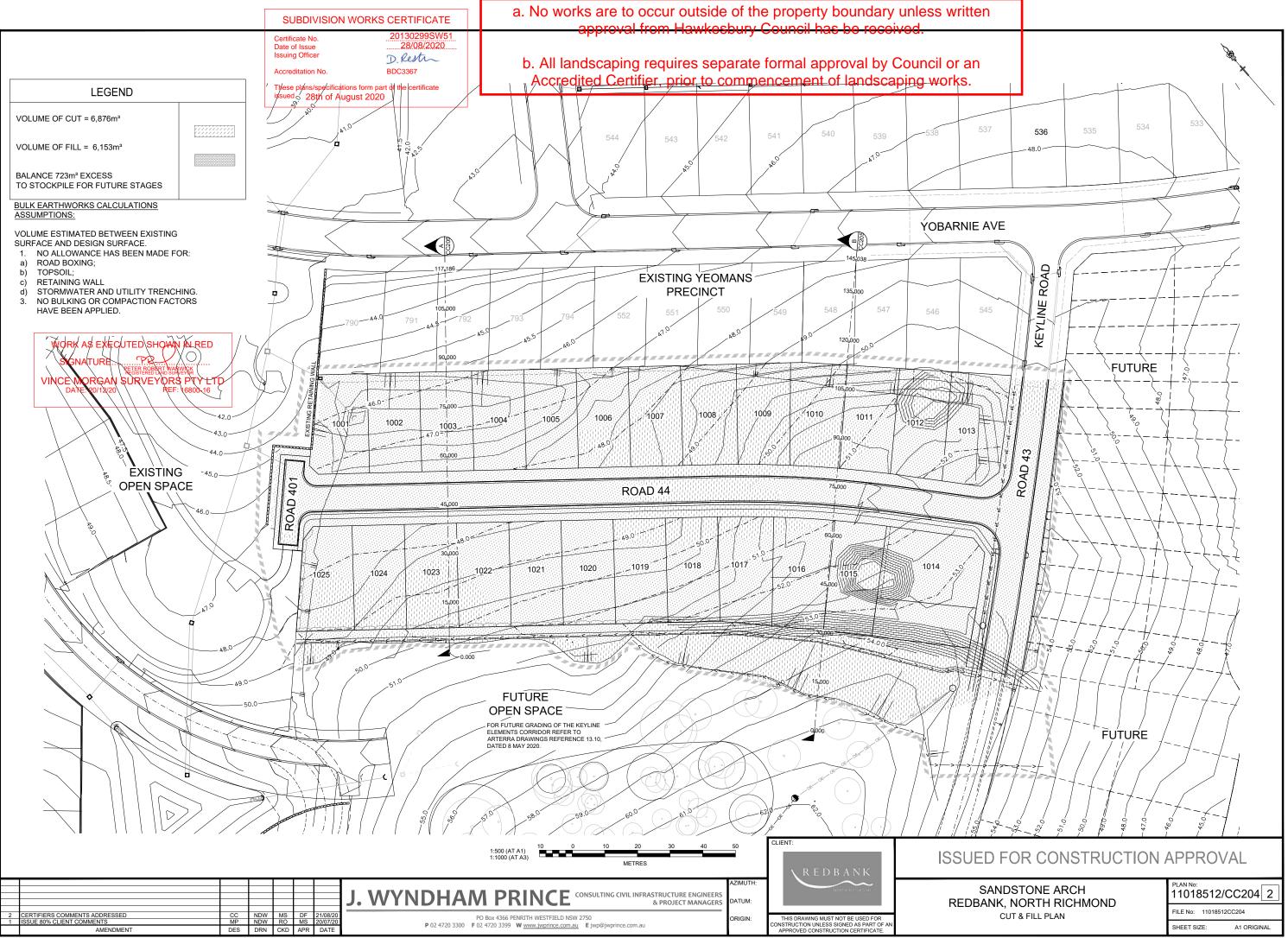
UNDERGROU

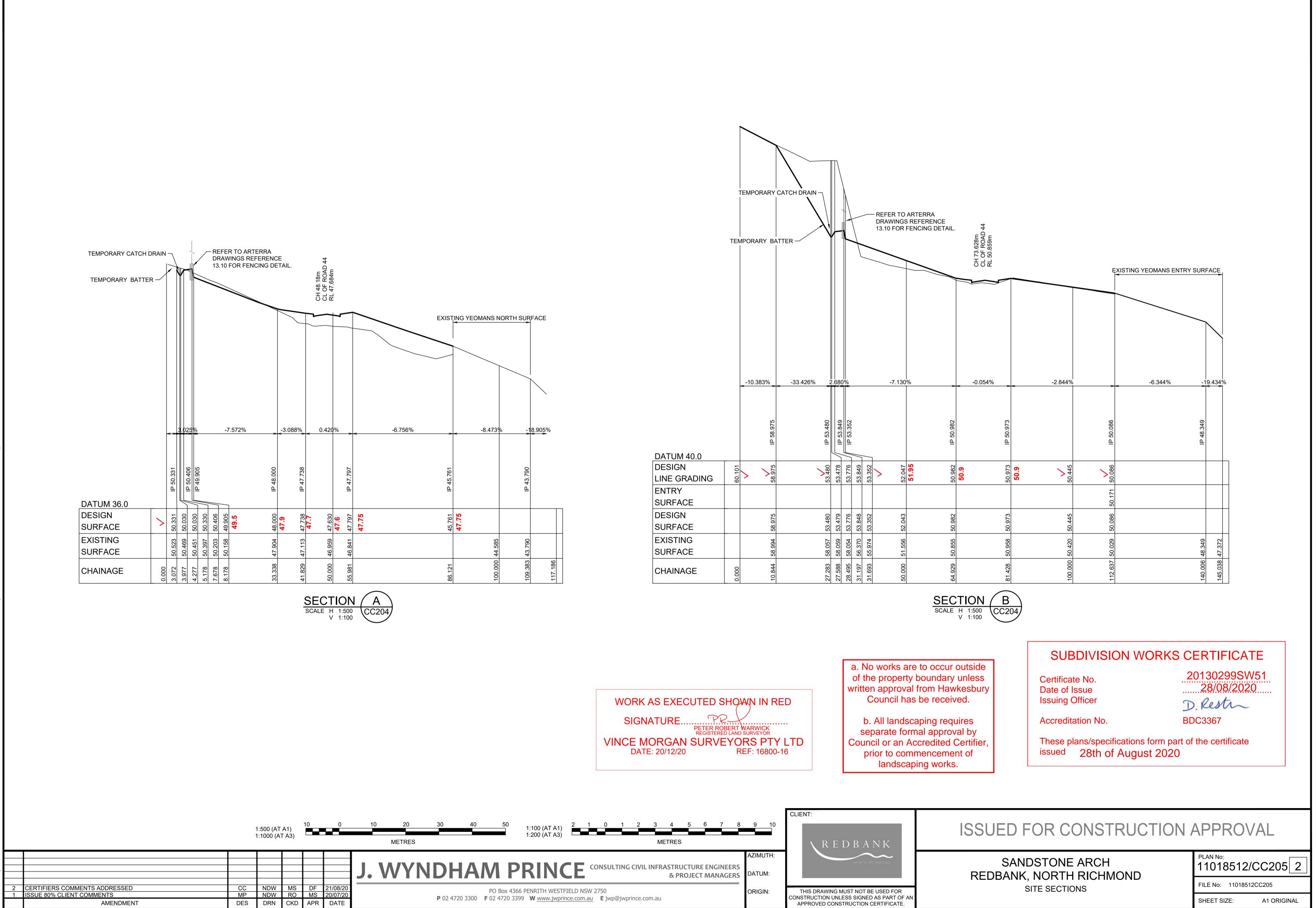
SUBSOIL DRA

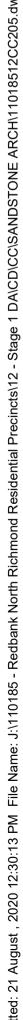
NBN, NBN BOX

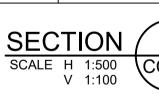

WATER, STOP

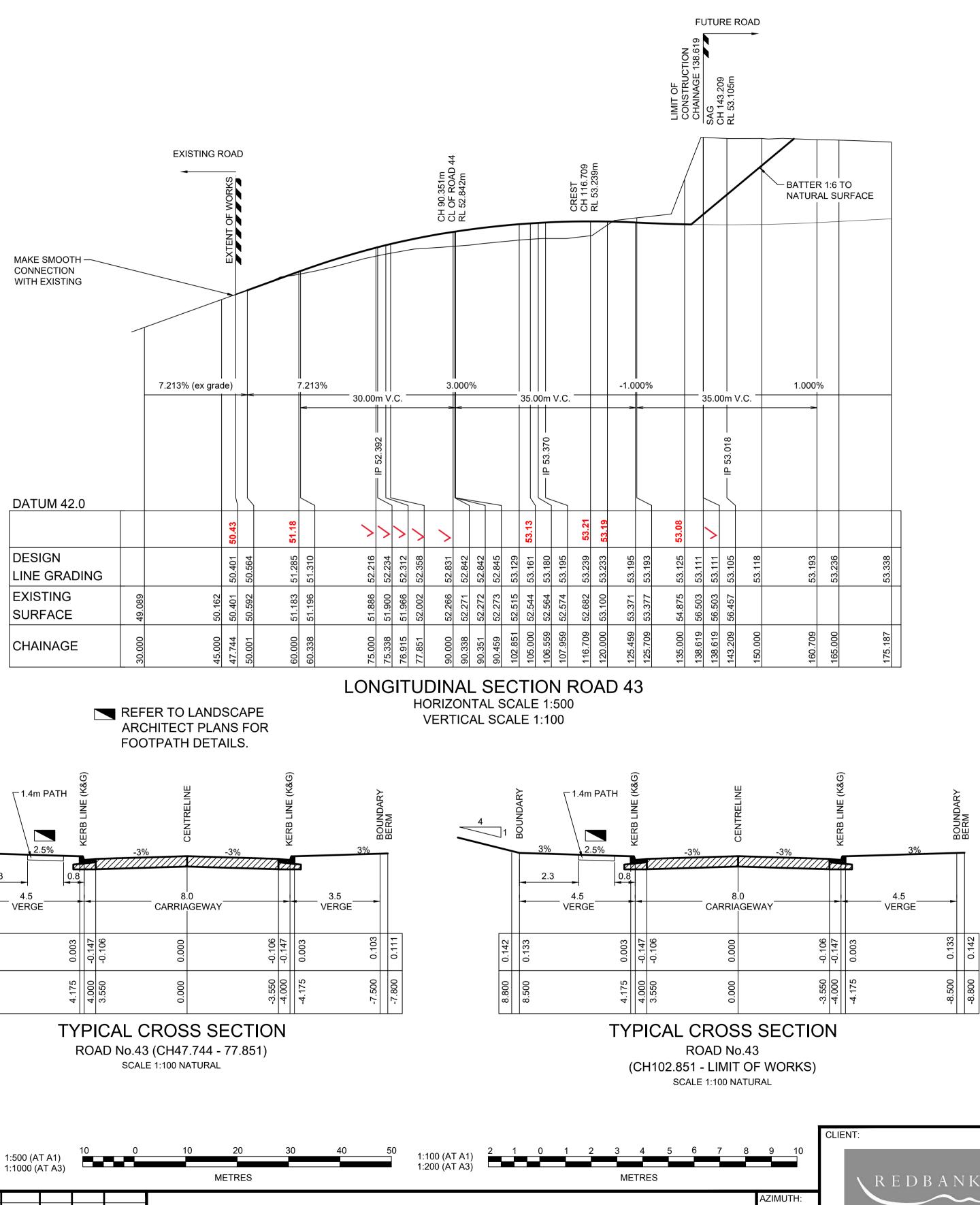

SEWER, MANH

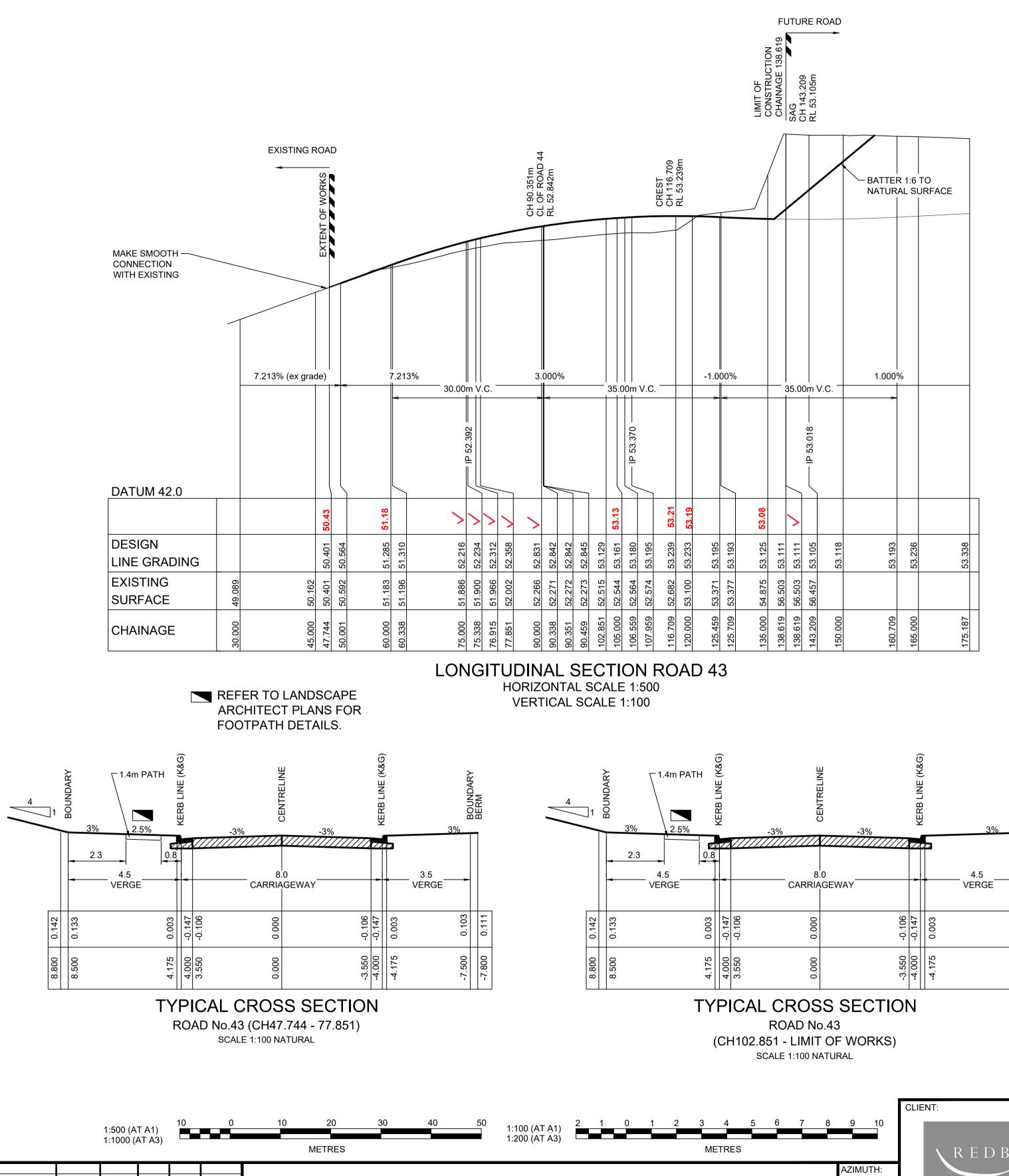

STREET SIGN

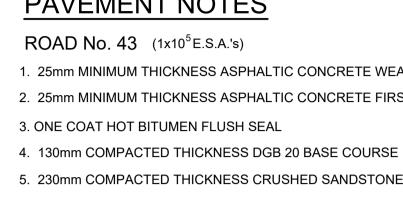

	LEGEND				
SCRIPTION	PROPOSED	EXIST	ING	FUTURE	
VORKS	KG				
ER				=======	===
DE	<u> </u>				
6	••••	000000	00000		
ILL					
UT					
		47.	0		
١	>>>				
, POWER POLE		eE eE			
R DRAINAGE					
ASEMENT					
LOW PATH					
PROTECTED					
REMOVED					
/ALLS					
E SIGN	SP				
JND ELECTRICITY		— OE—— OE——	0E 0E		
ND ELECTRICITY	—— E — E — E — E —	eE eE -	— eE ———		
NINAGE LINE	SSSS				
Х	NBNF NBNF				
P VALVE, HYDRANT	www				
HOLE	ssss				
IPOLE	SP				
Certificate No. Date of Issue Issuing Officer Accreditation N These plans/sp	SION WORK	2013 D. K BDC3 Dart of the 20	30299 8/08/2 Lestr 367	SW51 2020	
NOTE: UTILITI ALL SERVICES					
D FOR CON	STRUCTIO		PPR	OVAL	
ANDSTONE AR	СН			512/CC20	1 0
NK, NORTH RIC	CHMOND	- F		1018512CC201	1_2
RAL NOTES, INDEX &	LEGEND			101001200201	


SHEET SIZE:








		EMPORARY	CATCH DRAIN						ARTERRA S REFERENCE FENCING DETAIL	CH 73.628m	CL OF ROAD 44 RL 50.859m	
		-10.383%	-33.426%	2.6	 680%	6		-7.130	9%	-0.0	054%	
		IP 58.975		IP 53.480	IP 53.849	IP 53.352			P 50.982			1 20.9/ J
TUM 40.0 SIGN	10	75		~ 80	78	16	52	47	35	6		5
E GRADING	60.101	58.975	>	53.480	53.478	53.776 53.849	53.352	52.047	51.95	50.9		50.973
TRY RFACE												
SIGN		58.975		53.480	53.479	53.776 53.848	53.352	52.043	50 082			50.973
RFACE ISTING												
RFACE		58.994		58.057	58.059	58.054 56.370	55.974	51.556	50 855			869.06
AINAGE	0.000	10.844		27.283	27.588	28.495 31.197	31.693	50.000	64 929			81.428
									8C	ידו		

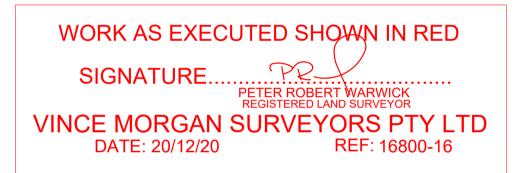
20 12:30:37 P				1:500 (A 1:1000 (/	T A1) AT A3)	10	0	10 20 30 40 50 METRES 1:100 (AT A1) 2 1 0 1 2 3 4 5 6 7	8
August , 20								J. WYNDHAM PRINCE CONSULTING CIVIL INFRASTRUCTURE ENGINEI & PROJECT MANAGE	ERS ERS
Plotted: 21	2	CERTIFIERS COMMENTS ADDRESSED ISSUE 80% CLIENT COMMENTS AMENDMENT	CC MP DES	NDW NDW DRN	MS RO CKD	MS	21/08/20 20/07/20 DATE	PO Box 4366 PENRITH WESTFIELD NSW 2750 P 02 4720 3300 F 02 4720 3399 W www.jwprince.com.au E jwp@jwprince.com.au	—

REF: 12261/27 - AB DATED: 04/06/2020

-8.500 -8.800

THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE.

ORIGIN:


DATUM:

PAVEMENT NOTES

1. 25mm MINIMUM THICKNESS ASPHALTIC CONCRETE WEARING COURSE (AC10) 2. 25mm MINIMUM THICKNESS ASPHALTIC CONCRETE FIRST COURSE (AC10)

5. 230mm COMPACTED THICKNESS CRUSHED SANDSTONE SUB-BASE

GEOTECHNICAL REPORT BY GEOTECHNIQUE Pty Ltd.

a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.

SUBDIVISION WORKS CERTIFICATE

Certificate No. Date of Issue Issuing Officer

20130299SW51 28/08/2020 D. Restr BDC3367

Accreditation No.

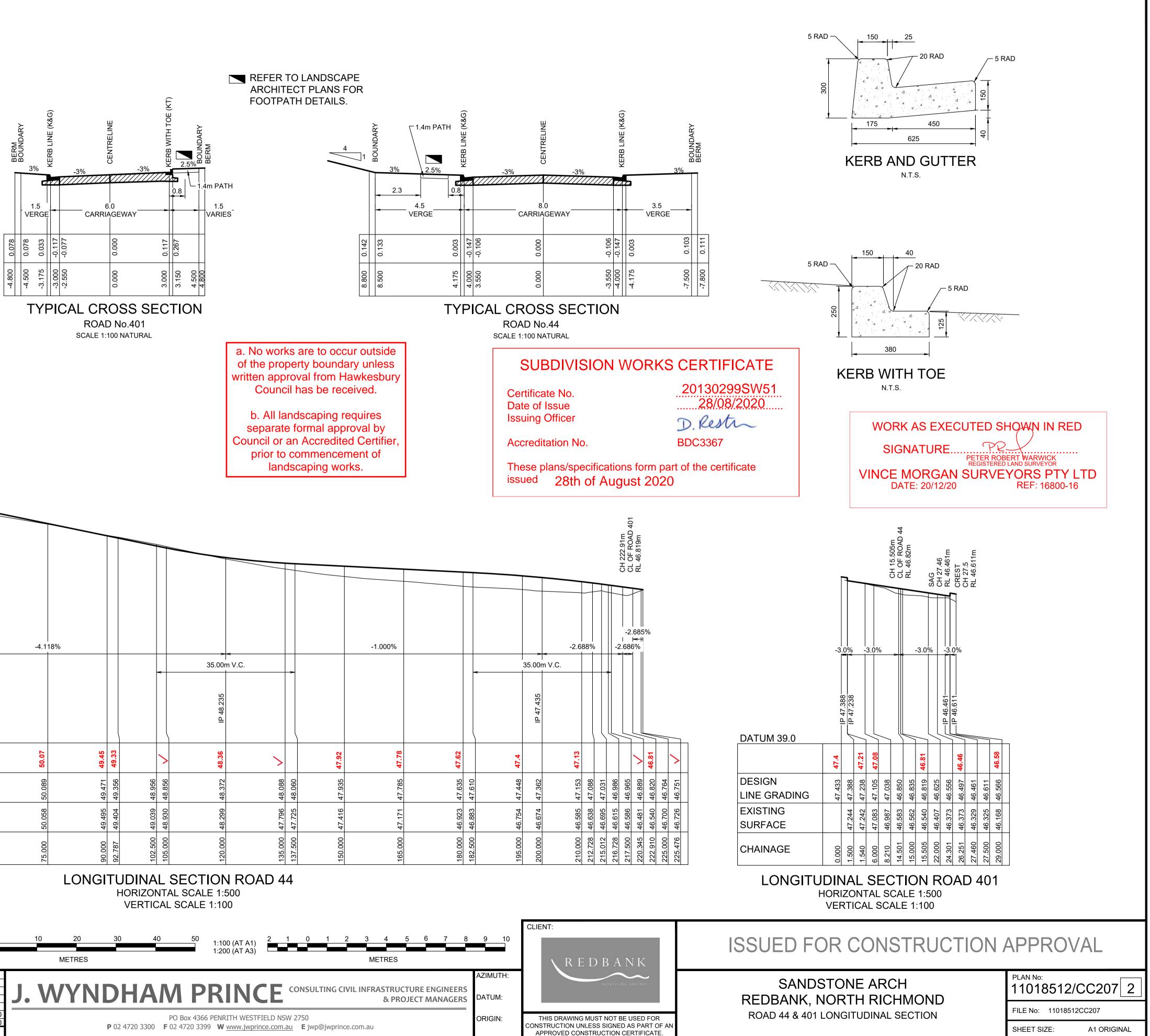
These plans/specifications form part of the certificate issued 28th of August 2020

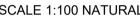
ISSUED FOR CONSTRUCTION APPROVAL

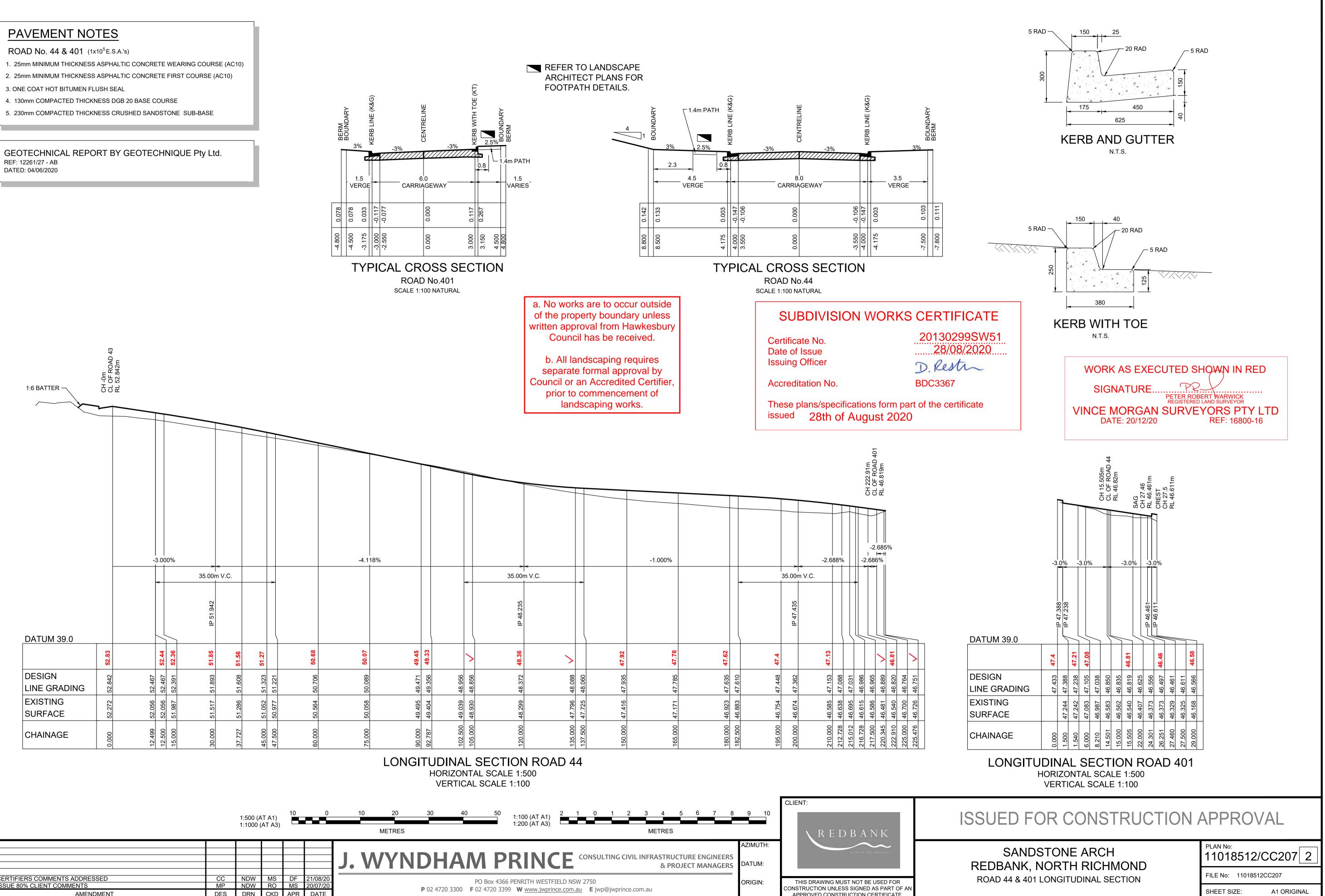
SANDSTONE ARCH **REDBANK, NORTH RICHMOND** ROAD 43 LONGITUDINAL SECTION

PLAN No: 11018512/CC206 2

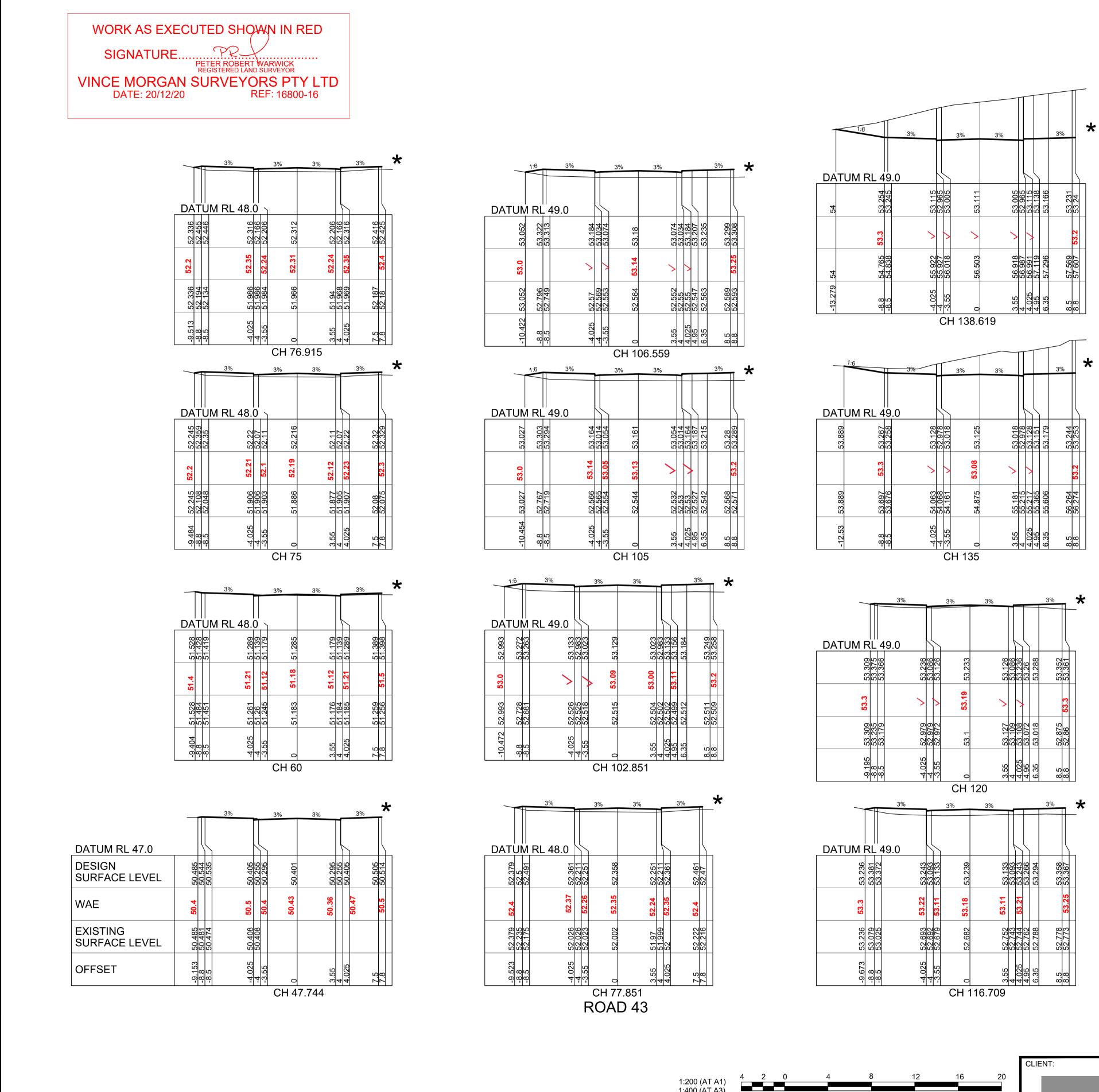
FILE No: 11018512CC206 A1 ORIGINAL

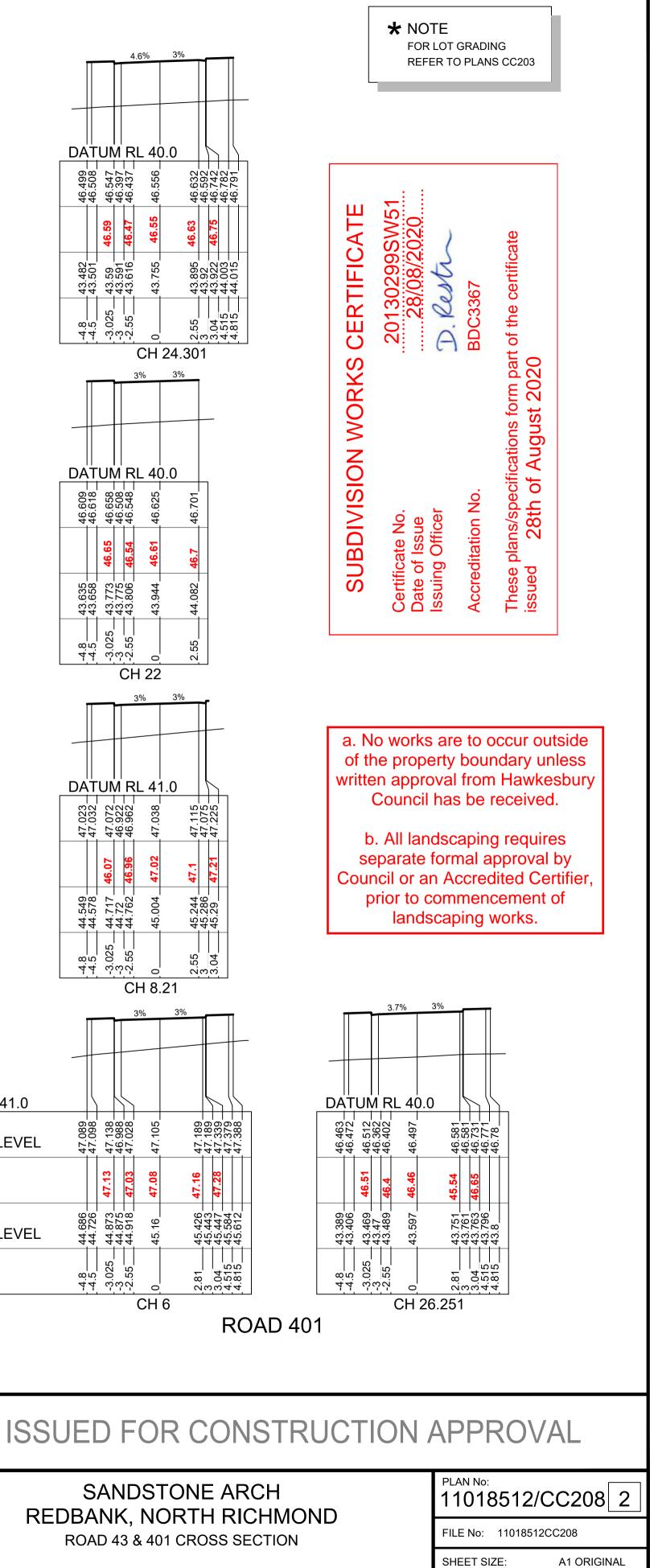

SHEET SIZE:

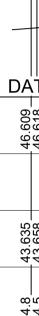

PAVEMENT NOTES

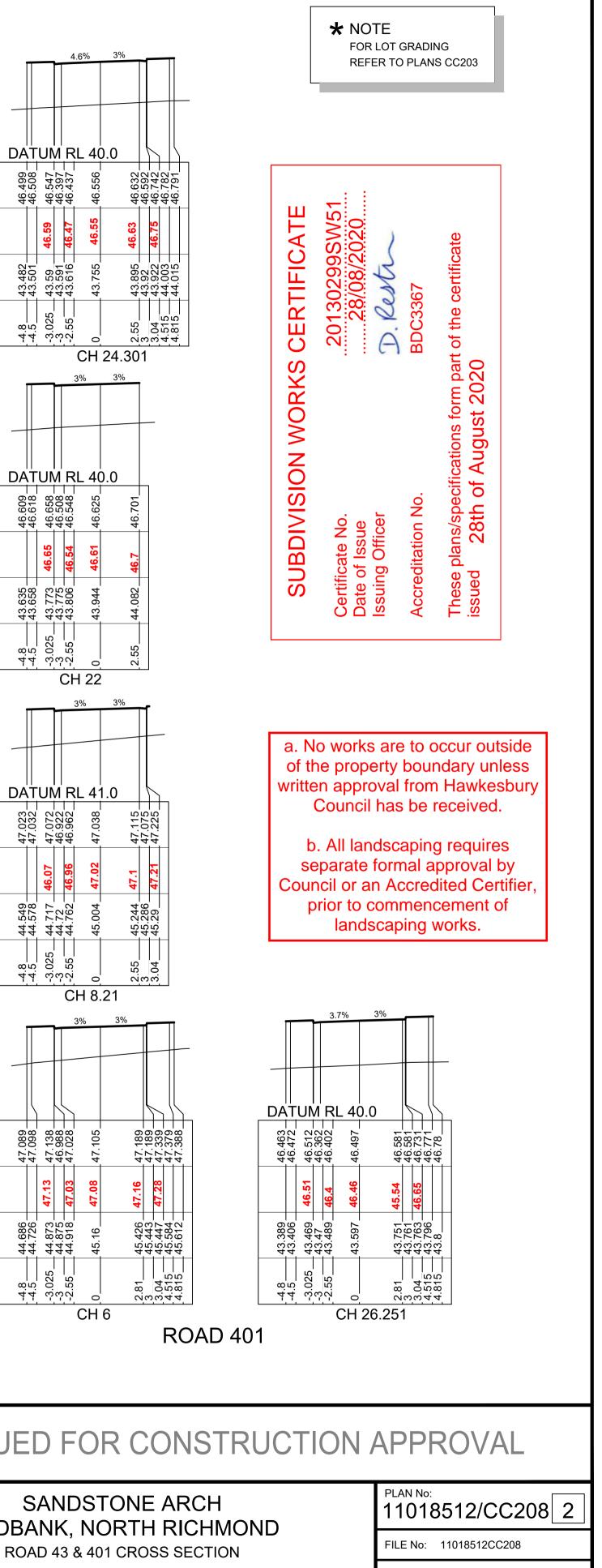

ROAD No. 44 & 401 (1x10⁵E.S.A.'s)

- 1. 25mm MINIMUM THICKNESS ASPHALTIC CONCRETE WEARING COURSE (AC10)
- 3. ONE COAT HOT BITUMEN FLUSH SEAL
- 4. 130mm COMPACTED THICKNESS DGB 20 BASE COURSE

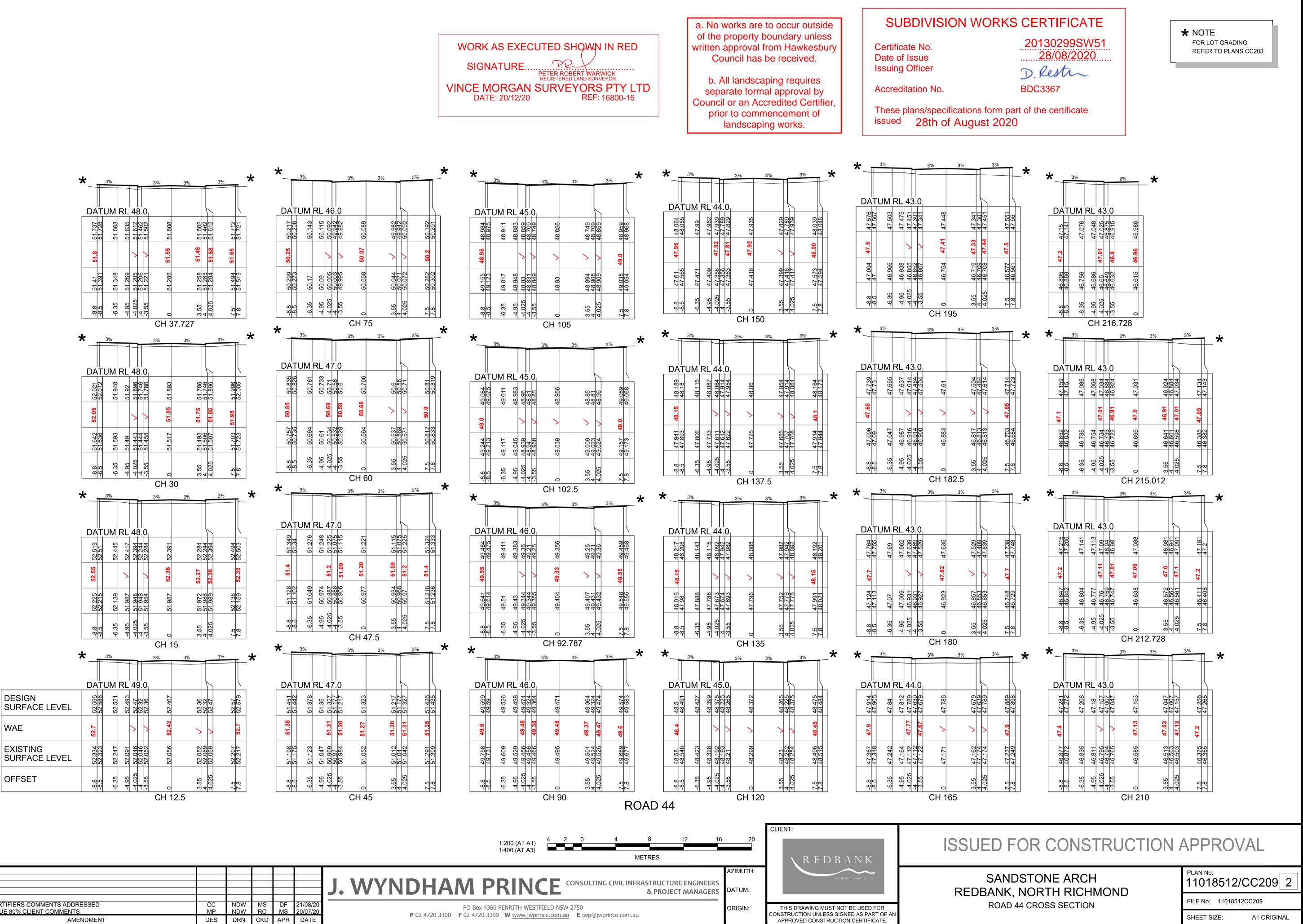

REF: 12261/27 - AB

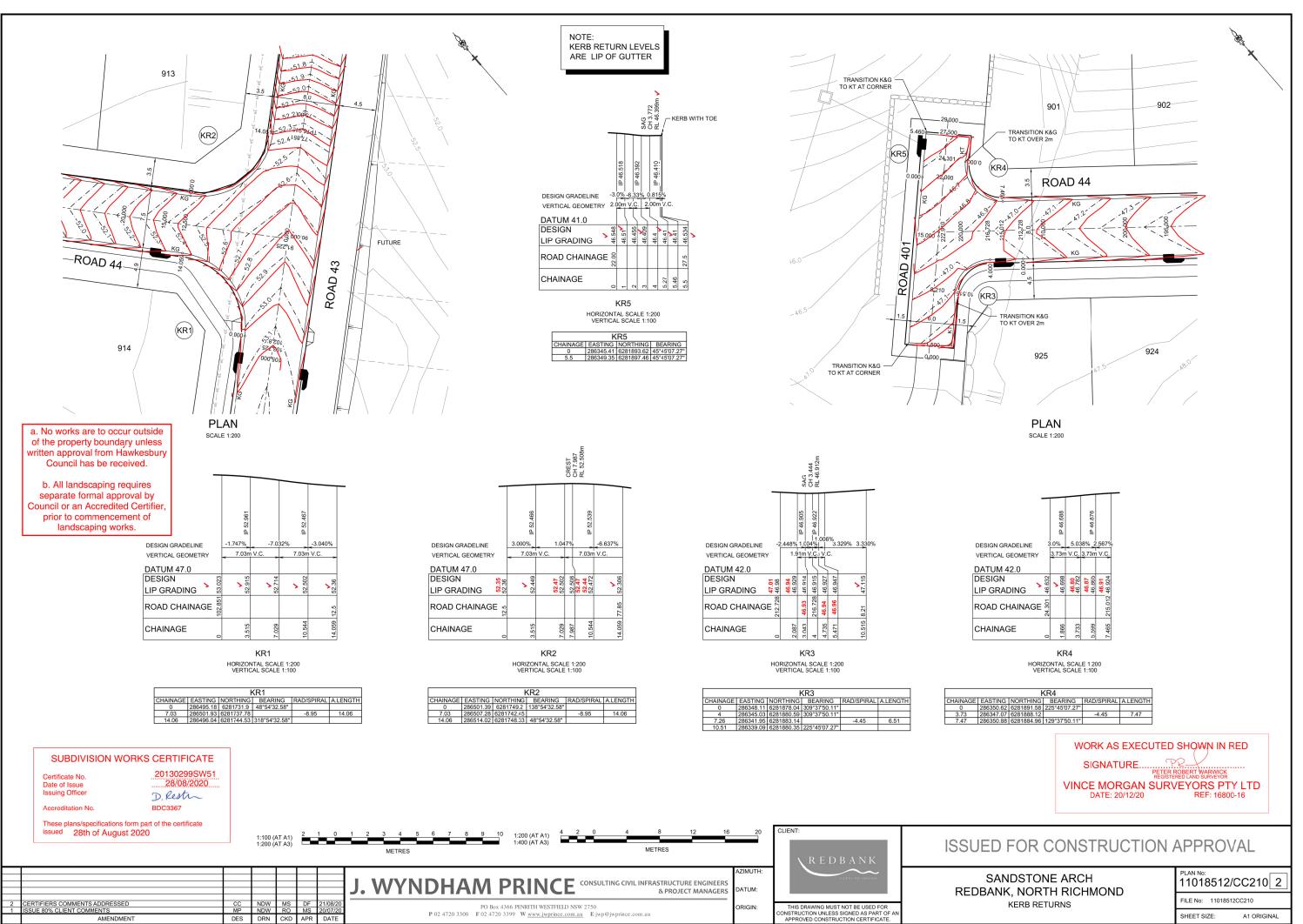


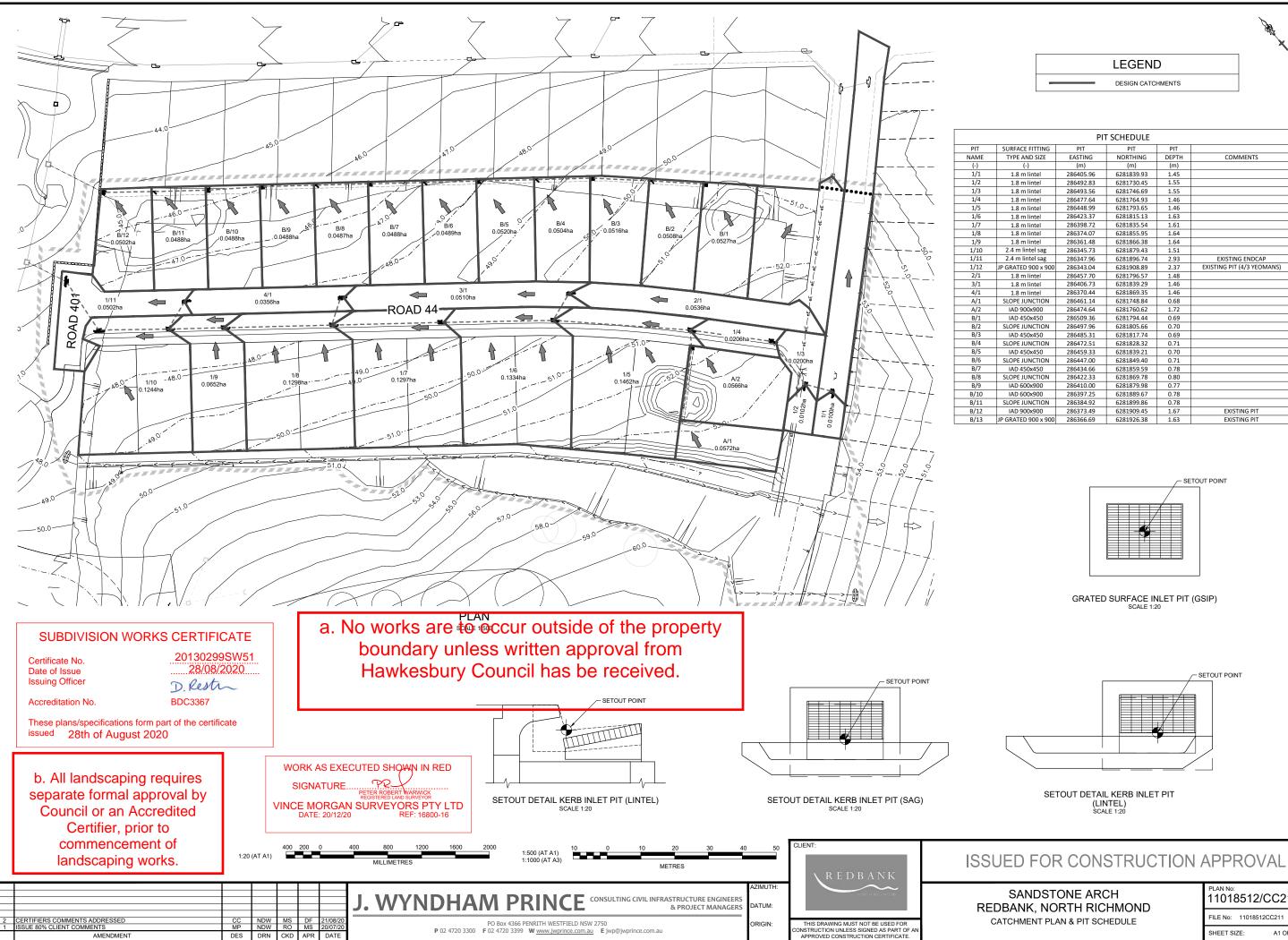



		1:500 (A 1:1000 (10	0		10	20 METRES	30	40
						J.	W	YN	DH	
CERTIFIERS COMMENTS ADDRESSED ISSUE 80% CLIENT COMMENTS AMENDMENT	CC MP DES	NDW NDW DRN	MS RO CKD	DF MS APR	21/08/20 20/07/20 DATE				P 02 4720	3300 F

							J. WYNDHA
2	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20	
1	ISSUE 80% CLIENT COMMENTS	MP	NDW	RO	MS	20/07/20	P 02 4720 3300
	AMENDMENT	DES	DRN	CKD	APR	DATE	₽ 02 4720 5500

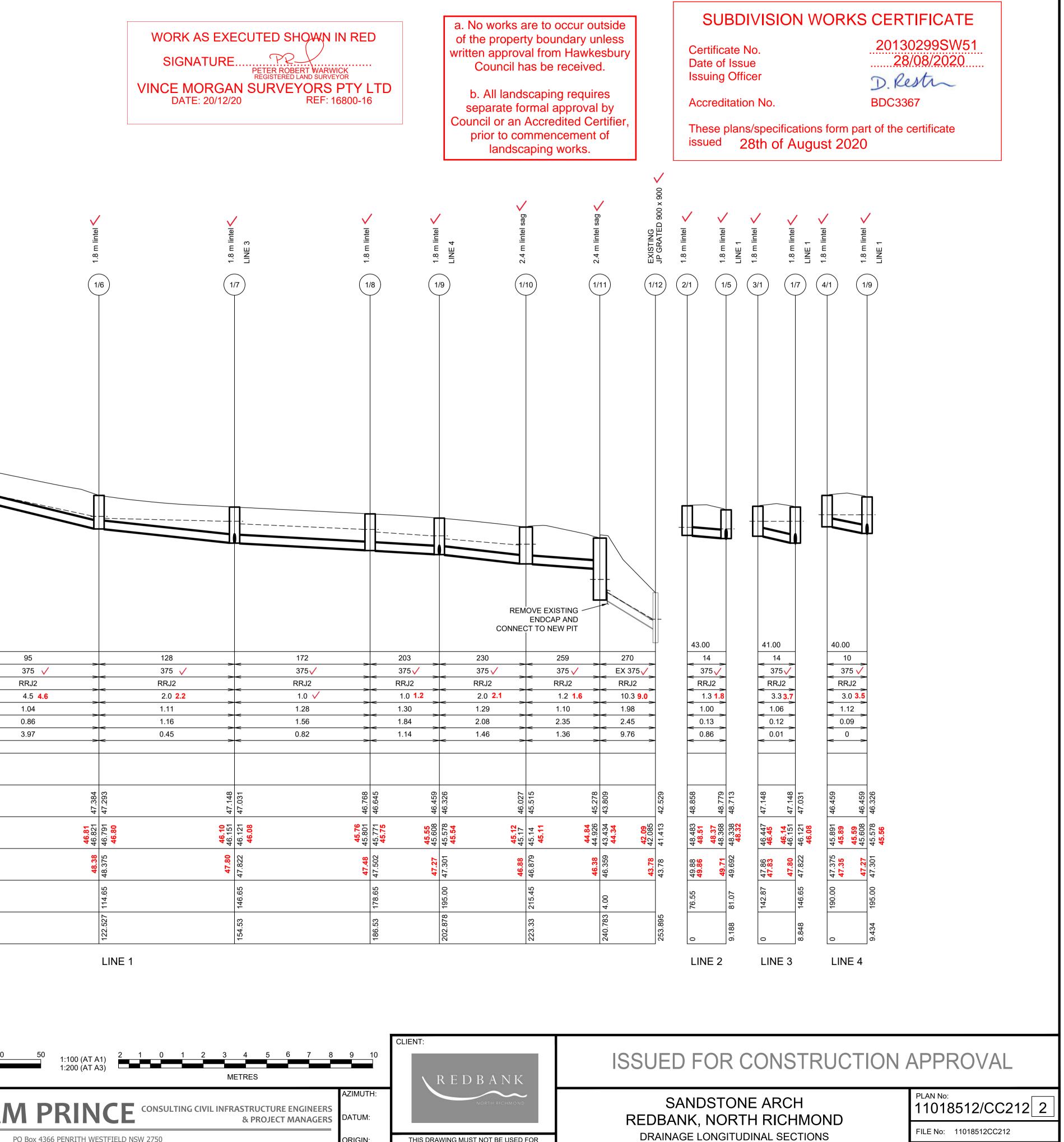




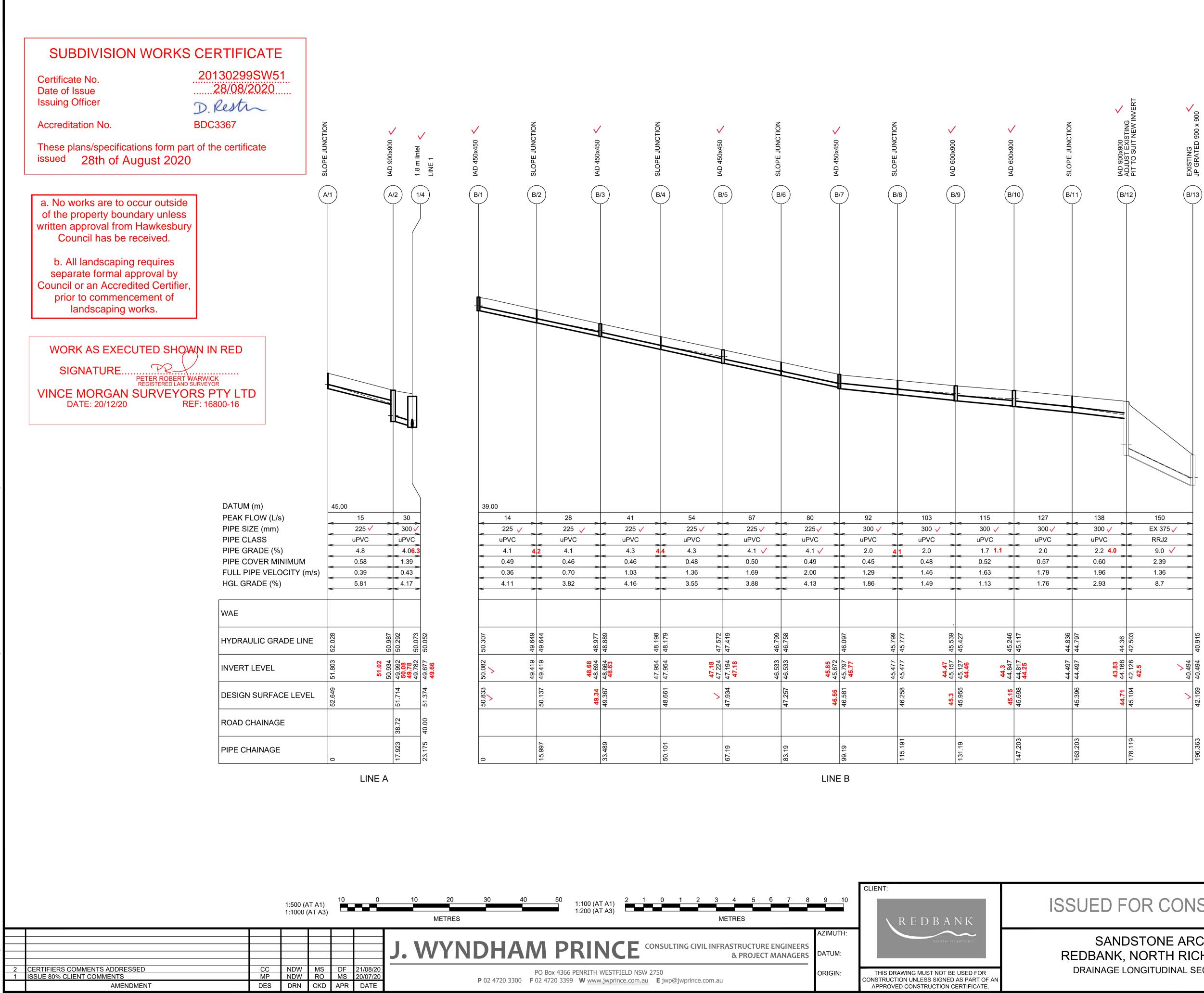

DATUM RL 41.0		\square	
DESIGN SURFACE LEVEL	47.089	47.098	
WAE			
EXISTING SURFACE LEVEL	44.686	• •	
OFFSET	-4.8	-4.5	

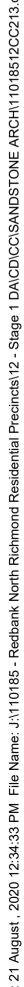
1:200 (AT A1) 1:400 (AT A3) METRES REDBANK AZIMUTH: AMPRINCE CONSULTING CIVIL INFRASTRUCTURE ENGINEERS & PROJECT MANAGERS DATUM: & PROJECT MANAGERS PO Box 4366 PENRITH WESTFIELD NSW 2750 THIS DRAWING MUST NOT BE USED FOR ORIGIN: 00 **F** 02 4720 3399 **W** <u>www.jwprince.com.au</u> **E** jwp@jwprince.com.au CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE.

							J •	
2	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20		
1	ISSUE 80% CLIENT COMMENTS	MP	NDW	RO	MS	20/07/20		P 02 4720 3
	AMENDMENT	DES	DRN	CKD	APR	DATE		P 02 4720 J


	PIT	SCHEDULE		
JRFACE FITTING	PIT	PIT	PIT	
TYPE AND SIZE	EASTING	NORTHING	DEPTH	COMMENTS
(-)	(m)	(m)	(m)	
1.8 m lintel	286405.96	6281839.93	1.45	
1.8 m lintel	286492.83	6281730.45	1.55	
1.8 m lintel	286493.56	6281746.69	1.55	
1.8 m lintel	286477.64	6281764.93	1.46	
1.8 m lintel	286448.99	6281793.65	1.46	
1.8 m lintel	286423.37	6281815.13	1.63	
1.8 m lintel	286398.72	6281835.54	1.61	
1.8 m lintel	286374.07	6281855.95	1.64	
1.8 m lintel	286361.48	6281866.38	1.64	
.4 m lintel sag	286345.73	6281879.43	1.51	
.4 m lintel sag	286347.96	6281896.74	2.93	EXISTING ENDCAP
RATED 900 x 900	286343.04	6281908.89	2.37	EXISTING PIT (4/3 YEOMANS)
1.8 m lintel	286457.70	6281796.57	1.48	
1.8 m lintel	286406.73	6281839.29	1.46	
1.8 m lintel	286370.44	6281869.35	1.46	
OPE JUNCTION	286461.14	6281748.84	0.68	
IAD 900x900	286474.64	6281760.62	1.72	
IAD 450x450	286509.36	6281794.44	0.69	
OPE JUNCTION	286497.96	6281805.66	0.70	
IAD 450x450	286485.31	6281817.74	0.69	
OPE JUNCTION	286472.51	6281828.32	0.71	
IAD 450x450	286459.33	6281839.21	0.70	
OPE JUNCTION	286447.00	6281849.40	0.71	
IAD 450x450	286434.66	6281859.59	0.78	
OPE JUNCTION	286422.33	6281869.78	0.80	
IAD 600x900	286410.00	6281879.98	0.77	
IAD 600x900	286397.25	6281889.67	0.78	
OPE JUNCTION	286384.92	6281899.86	0.78	
IAD 900x900	286373.49	6281909.45	1.67	EXISTING PIT
RATED 900 x 900	286366.69	6281926.38	1.63	EXISTING PIT

11018512/CC211 2 FILE No: 11018512CC211 SHEET SIZE: A1 ORIGINAL


1.8 m lintel				\sim	$\overline{}$
			/3)		/5)
Ę					
		ELE(STING UNDERGROUND CTRICITY DUCTS		
DATUM (m)	41.00				
PEAK FLOW (L/s)	2	5	10	46	
PIPE SIZE (mm)	375	375 🗸	375 🗸	375 🗸	~
PIPE CLASS	<pre>RRJ2</pre>	RRJ2	RRJ2	RRJ2	<
PIPE GRADE (%)	5.55.0	2.0 1.8	4.1 4.5	3.2 3.3	<
	< 1.20	1.28	< 1.08 >	1.11	<
FULL PIPE VELOCITY (m/s)	< 0.02	0.05	< 0.09	0.42	<
HGL GRADE (%)	<u><</u> 5.37 <	2.18	<u>4.13</u>	3.14	<
WAE					
HYDRAULIC GRADE LINE	51.861	51.428 51.074	51.073	50.052 50.052 48.779	48.713
INVERT LEVEL	51.486 51.47 51.06 51.083	51.053 51.05 51.05 50.76 50.76	50.698 50.7 49.66 49.707	49.677 49.65 49.65 49.65 48.34	48.338 48.32
DESIGN SURFACE LEVEL	53.033 52.98	53.021 52.98 52.98 52.19	52.22 51.36	51.374	49.692
ROAD CHAINAGE	106.52	105.57	14.06	40.00	81.07
PIPE CHAINAGE	0	8.055	24.311	48.525	89.088


			1:500 (1:1000	AT A1) (AT A3)	10	0	10 20 30 40 50 METRES 1:100 (AT A1) 2 1 0 1 2 3 4 5 6 7 7	9 10	CLIENT:	ISSUED
							J. WYNDHAM PRINCE CONSULTING CIVIL INFRASTRUCTURE ENGINEERS & PROJECT MANAGERS	AZIMUTH: DATUM:	NORTH RICHMOND	S/ REDBAI
2 1	CERTIFIERS COMMENTS ADDRESSED ISSUE 80% CLIENT COMMENTS AMENDMENT	CC MP DES	NDW NDW DRN	MS RO CKD	DF MS APR	21/08/20 20/07/20 DATE	PO Box 4366 PENRITH WESTFIELD NSW 2750 P 02 4720 3300 F 02 4720 3399 W <u>www.jwprince.com.au</u> E jwp@jwprince.com.au	ORIGIN:	THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE.	DRAINA

A1 ORIGINAL

SHEET SIZE:

ISSUED FOR CONSTRUCTION APPROVAL

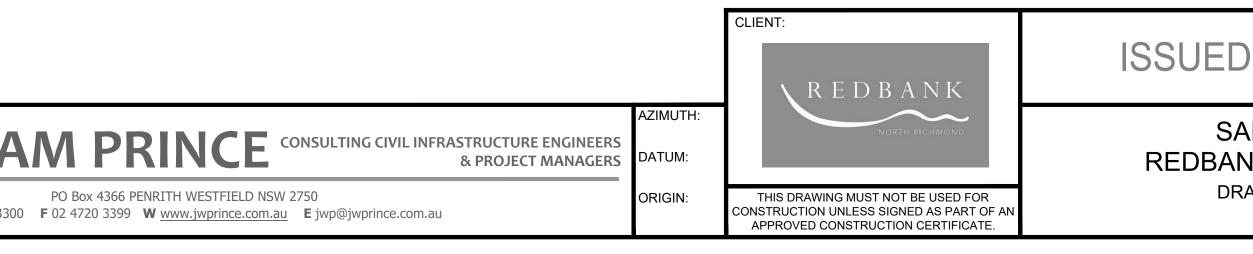
SANDSTONE ARCH REDBANK, NORTH RICHMOND DRAINAGE LONGITUDINAL SECTIONS

PLAN No: 11018512/CC213 2

FILE No: 11018512CC213 SHEET SIZE:

	DESIGN STORM 1:5yr ARI HYDROLOGIC RES														C RESU	LTS											
PIT	PIT	CATCHMENT	IMPERVIOUS	RUNOFF	IMPERVIOUS	IMPERVIOUS	PERVIOUS	PERVIOUS	FULL AREA	FULL AREA	FULL AREA	PARTIAL	PARTIAL	PARTIAL AREA	TOTAL	DIRECT	APPROACH	FLOODED	FLOODED	FLOODED	ROAD	ROAD	СНОКЕ	INLET	BYPASS	BYPASS	COMMENTS
NAME	ТҮРЕ	AREA	PERCENTAGE	С	TIME Tc	INTENSITY I	TIME Tc	INTENSITY I	TIME Tc	INTENSITY I	CATCHMENT FLOW Qc	AREA TIME Tc	AREA INTENSITY I	CATCHMENT FLOW Qc	CATCHMENT FLOW Qc	FLOW Qd	FLOW Qa	DEPTH d	WIDTH w	(vxd)	GRADE	XFALL			FLOW Qb	PIT	
(-)	(-)	(ha)	(%)	(-)	(min)	(mm/hr)	(min)	(mm/hr)	(min)	(mm/hr)	(L/s)	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(m)	(sq.m/s)	(%)	(%)	(-)	(L/s)	(L/s)	(-)	
1/1	1.8 m lintel	0.01	70	0.803	5	130.8	10	100.1	10	100.1	2	5	130.8	2	2	0	2	0.03	0.37	0.01	1	3	1	2	0	LOST	
1/2	1.8 m lintel	0.009	85	0.801	5	130.8	10	100.1	10	100.1	2	5	130.8	3	3	0	3	0.03	0.36	0.01	1	3	1	3	0	1/3	
1/3	1.8 m lintel	0.019	85	0.801	5	130.8	10	100.1	10	100.1	4	5	130.8	5	5	0	5	0.03	0.4	0.03	3.1	4.2	1	5	0	1/4	
1/4	1.8 m lintel	0.021	85	0.801	5	130.8	10	100.1	10	100.1	5	5	130.8	6	6	0	6	0.03	0.4	0.03	3.9	3	1	6	0	1/5	
1/5	1.8 m lintel	0.141	85	0.802	5	130.8	10	100.1	10	100.1	31	5	130.8	38	38	0	38	0.07	1.38	0.07	4.2	3	1	35	3	1/6	
1/6	1.8 m lintel	0.126	85	0.801	5	130.8	10	100.1	10	100.1	28	5	130.8	34	34	0	36	0.07	1.42	0.07	3.1	3	1	34	2	1/7	
1/7	1.8 m lintel	0.122	85	0.802	5	130.8	10	100.1	10	100.1	27	5	130.8	33	33	0	35	0.08	1.82	0.05	1	3	1	33	2	1/8	
1/8	1.8 m lintel	0.123	85	0.802	5	130.8	10	100.1	10	100.1	27	5	130.8	33	33	0	35	0.08	1.82	0.05	1	3	1	33	2	1/9	
1/9	1.8 m lintel	0.063	85	0.802	5	130.8	10	100.1	10	100.1	14	5	130.8	17	17	0	19	0.06	1.25	0.04	1.5	3	1	19	0	1/10	
1/10	2.4 m lintel sag	0.118	85	0.802	5	130.8	10	100.1	10	100.1	26	5	130.8	32	32	0	32	0.04			2.4	3	1	32	0	1/11	
1/11	2.4 m lintel sag	0.05	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	14	14	0	14	0.02			4	4.9	1	14	0	LOST	EXISTING ENDCAP
1/12	JP GRATED 900 x 900																										EXISTING PIT (4/3 YEOMANS)
2/1	1.8 m lintel	0.053	85	0.801	5	130.8	10	100.1	10	100.1	12	5	130.8	14	14	0	14	0.05	0.75	0.05	4.1	3	1	14	0	3/1	
3/1	1.8 m lintel	0.052	85	0.801	5	130.8	10	100.1	10	100.1	12	5	130.8	14	14	0	14	0.06	1.19	0.03	1	3	1	14	0	4/1	
4/1	1.8 m lintel	0.036	85	0.801	5	130.8	10	100.1	10	100.1	8	5	130.8	10	10	0	10	0.05	0.88	0.03	1.3	3	1	10	0	1/11	
A/1	SLOPE JUNCTION	0.055	85	0.801	5	130.8	10	100.1	10	100.1	12	5	130.8	15	15	0	15							15	0		
A/2	IAD 900x900	0.054	85	0.801	5	130.8	10	100.1	10	100.1	12	5	130.8	15	15	0	15				3.8			15	0		
B/1	IAD 450x450	0.053	85	0.802	5	130.8	10	100.1	10	100.1	12	5	130.8	14	14	0	14							14	0		
B/2	SLOPE JUNCTION	0.051	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	14	14	0	14							14	0		
B/3	IAD 450x450	0.052	85	0.802	5	130.8	10	100.1	10	100.1	12	5	130.8	14	14	0	14							14	0		
B/4	SLOPE JUNCTION	0.05	85	0.802	5	130.8	10	100.1	10	100.1	11	5	130.8	14	14	0	14							14	0		
B/5	IAD 450x450	0.052	85	0.802	5	130.8	10	100.1	10	100.1	12	5	130.8	14	14	0	14							14	0		
B/6	SLOPE JUNCTION	0.049	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	13	13	0	13							13	0		
B/7	IAD 450x450	0.049	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	13	13	0	13							13	0		
B/8	SLOPE JUNCTION	0.049	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	13	13	0	13							13	0		
B/9	IAD 600x900	0.049	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	13	13	0	13							13	0		
B/10	IAD 600x900	0.049	85	0.801	5	130.8	10	100.1	10	100.1	11	5	130.8	13	13	0	13							13	0		
B/11	SLOPE JUNCTION	0.049	85	0.802	5	130.8	10	100.1	10	100.1	11	5	130.8	13	13	0	13							13	0		
B/12	IAD 900x900	0.05	85	0.802	5	130.8	10	100.1	10	100.1	11	5	130.8	14	14	0	14							14	0		EXISTING PIT
B/13	JP GRATED 900 x 900																										EXISTING PIT

	DESIGN STORM 1:5yr ARI HYDRAULIC RESULTS																																						
PIPE	PIPE	PIPE	PIPE	PIPE	PIPE	FULL AREA	FULL AREA	FULL AREA	FULL AREA	PART-AREA	PART-AREA	PART-AREA	PART-AREA	DIRECT PIPE	PEAK	NET BYPASS	PIPE	FLOW	Q/Qcap F	FULL PIPE	NORM. DEPTH	CRIT. DEPTH	I U/S PIT	PIPE	PIPE	PIPE U	/S PIT	U/S PIT	PIPE	PIT LOSS	WSE LOSS	TOTAL	U/S PIT	U/S PIPE	D/S PIPE	HGL	MIN.	U/S	COMMENTS
NAME	TYPE	DIAMETER	LENGTH	SLOPE	AREA Af	TIME Tc	INTENSITY I	SUM CA	FLOW Qc	TIME Tc	INTENSITY I	SUM CA	FLOW Qc	FLOW Qp	LOW Qrat	FLOW Qb	FLOW Q	CAP. Qcap	RATIO V	VELOCITY	VELOCITY	VELOCITY	GRATE RL	U/S IL	D/S IL [D/S DROP	Ku	Kw	V'HEAD	(Ku.V'head)	(Kw.V'head)	PIPE LOSS	HGL	HGL	HGL	GRADE	COVER /	FREEBOARD	
(-)	(-)	(mm)	(m)	(%)	(sq.m)	(min)	(mm/hr)	(ha)	(L/s)	(min)	(mm/hr)	(ha)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(-)	(m/s)	(m/s)	(m/s)	(m)	(m)	(m)	(m)	(-)	(-)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(%)	(m)	(m)	
1/1 to 1/2	RRJ2	375	8.06	5	0.11	10	100.1	0.008	2.2	5	130.8	0.01	2.5	0	2.5	0	2.5	424.9	0.01	0.02	1.05	0.48	53.033	51.486	51.083	0.031	4.5		0	0	0	0.43	51.861	51.861	51.429	5.37	1.2	1.17	
1/2 to 1/3	RRJ2	375	16.26	2	0.11	10.07	99.8	0.016	4.3	5.07	130.3	0.01	5	0	5	0	5	268.7	0.02	0.05	0.94	0.58	53.021	51.053	50.728	0.03	1.86	2.49	0	0	0	0.35	51.429	51.428	51.074	2.18	1.28	1.59	
1/3 to 1/4	RRJ2	375	24.21	4.1	0.11	10.2	99.3	0.031	8.5	5.14	129.7	0.03	10	0	10	0	10	384.6	0.03	0.09	1.49	0.69	52.22	50.698	49.707	0.031	1.93	2.58	0	0	0	1	51.074	51.073	50.071	4.14	1.08	1.15	
1/4 to 1/5	RRJ2	375	40.56	3.23	0.11	10.4	98.6	0.135	36.9	5.19	129.2	0.12	44.4	0	44.4	0	44.4	341.3	0.13	0.4	2.13	1.06	51.374	49.677	48.368	0.031	2.38	2.68	0.01	0.02	0.02	1.28	50.074	50.052	48.775	3.15	1.11	1.3	
1/5 to 1/6	RRJ2	375	33.44	4.54	0.11	10.74	97.3	0.29	78.5	5.38	127.6	0.27	94.4	0	94.4	-2.6	91.8	404.7	0.23	0.83	2.96	1.35	49.692	48.338	46.821	0.031	1.77	2.2	0.04	0.06	0.08	1.45	48.791	48.713	47.262	4.34	1.04	0.9	
1/6 to 1/7	RRJ2	375	32	2	0.11	11.02	96.2	0.391	104.5	5.66	125.3	0.36	125.3	0	125.3	-2.3	123	268.7	0.46	1.11	2.38	1.51	48.375	46.791	46.151	0.031	1.35	1.36	0.06	0.09	0.09	0.13	47.262	47.176	47.042	0.42	1.1	1.11	
1/7 to 1/8	RRJ2	375	32	1	0.11	11.29	95.2	0.53	140.1	5.62	125.7	0.48	167.9	0	167.9	-2	165.8	190	0.87	1.5	1.94	1.75	47.822	46.121	45.801	0.031	0.96	1.02	0.12	0.11	0.12	0.24	47.049	46.931	46.688	0.76	1.28	0.77	
1/8 to 1/9	RRJ2	375	16.35	1	0.11	11.55	94.2	0.628	164.4	6.19	121.4	0.58	196.7	0	196.7	-2	194.7	190	1.02	1.76	1.96	1.93	47.502	45.771	45.608	0.03	0.73		0.16	0.12	0.12	0.17	46.688	46.571	46.399	1.05	1.3	0.81	
1/9 to 1/10	RRJ2	375	20.45	2	0.11	11.69	93.7	0.709	184.5	6.33	120.7	0.66	221.1	0	221.1	0	221.1	268.4	0.82	2	2.71	2.12	47.301	45.578	45.17		0.63	0.66	0.2	0.13	0.14	0.28	46.405	46.27	45.993	1.35	1.29	0.9	
1/10 to 1/11	RRJ2	375	17.45	1.22	0.11	11.86	93	0.804	207.6	6.46	120	0.75	249.1	0	249.1	0	249.1	210.3	1.18	2.25	2.25	2.33	46.879	45.14	44.926	1.493	1.84	2.02	0.26	0.48	0.53	0.22	46.04	45.515	45.274	1.38	1.1	0.84	
1/11 to 1/12	RRJ2	375	13.11	10.29	0.11	12.01	92.5	0.844	216.7	6.34	120.6	0.78	260.1	0	260.1	0	260.1	609.5	0.43	2.35	5.3	2.42	46.359	43.434	42.085		1.8	1.96	0.28	0.51	0.56	1.28	44.364	43.809	42.529	9.76	2.63	1.99	EXISTING PIPELINE
2/1 to 1/5	RRJ2	375	9.19	1.25	0.11	10	100.1	0.043	11.9	5	130.8	0.04	14.3	0	14.3	0	14.3	212.5	0.07	0.13	1.1	0.76	49.88	48.483	48.368	0.03	9.7		0	0.01	0.01	0.08		.0.000	48.775	0.9	1	1.01	
3/1 to 1/7	RRJ2	375	9.87	3	0.11	10	100.1	0.041	11.4	5	130.8	0.04	13.8	0	13.8	0	13.8	329.1	0.04	0.12	1.47	0.76	47.88	46.447	46.151	0.031	9.13		0	0.01	0.01	0	47.049	47.042	47.042	0.01	1.07	0.83	
4/1 to 1/9	RRJ2	375	9.43	3	0.11	10	100.1	0.03	8.4	5	130.8	0.03	10.1	0	10.1	0	10.1	329.1	0.03	0.09	1.34	0.7	47.375	45.891	45.608	0.03	9.7		0	0	0	0	46.404	46.4	46.399	0	1.12	0.97	
A/1 to A/2	uPVC	225	17.92	4.85	0.04	10	100.1	0.044	12.2	5	130.8	0.04	14.8	0	14.8	0	14.8	128.6	0.11	0.37	2.15	0.86	52.649	51.803	50.934	0.943	0.2		0.01	0	0	0.81	52.029	52.028	50.985	5.82	0.58	0.62	
A/2 to 1/4	uPVC	300	5.25	4	0.07	10.15	99.5	0.087	24.1	5.15	129.6	0.08	29.1	0	29.1	0	29.1	251.5	0.12	0.41	2.37	0.99	51.714		49.782	0.105	2.29	2.74	0.01	0.02	0.02	0.22	50.315	50.292	50.071	4.2	1.39	1.4	
B/1 to B/2	uPVC	225	16	4.14	0.04	10	100.1	0.042	11.7	5	130.8	0.04	14.2	0	14.2	0	14.2	118.9	0.12	0.36	2.01	0.85	50.833		49.419	0	7		0.01	0.05	0.05	0.66	50.352		49.649	4.11	0.49	0.48	
B/2 to B/3	uPVC	225	17.49	4.14	0.04	10.13	99.6	0.083	23	5.13	129.7	0.08	27.7	0	27.7	0	27.7	118.9	0.23	0.7	2.44	1.07	50.137	49.419		0.03	0.2		0.02	0	0	0.67	49.649		48.977	3.81	0.46	0.49	
B/3 to B/4	uPVC	225	16.61	4.27	0.04	10.28	99	0.124	34.2	5.28	128.5	0.12	41.1	0	41.1	0	41.1	120.7	0.34	1.03	2.75	1.28	49.367	48.664		-	1.61	1.7	0.05	0.09	0.09	0.69		48.889				0.39	
B/4 to B/5	uPVC	225	17.09	4.27	0.04	10.42	98.5	0.165	45.1	5.28	128.5	0.15	54.1	0	54.1	0	54.1	120.7		1.36	2.95	1.49		47.954		0.031	0.2		0.09	0.02	0.02	0.61		48.179				0.46	
B/5 to B/6	uPVC	225	16	4.13	0.04	10.56	98	0.206	56.2	5.43	127.3	0.19	67.3	0	67.3	0	67.3	118.7	0.57	1.69	3.08	1.76	47.934	47.194	46.533	0	1.04		0.15	0.15	0.15	0.62	47.571	47.419	46.799	3.88	0.5	0.36	
B/6 to B/7	uPVC	225	16	4.13	0.04	10.69	97.5	0.246	66.5	5.56	126.2	0.23	79.5	0	79.5	0	79.5	118.7	0.67	2	3.2	2.03	47.257	10.555	45.872	0.076	0.2		0.2	0.04	0.04	0.66	46.799		46.097	4.13	0.49	0.46	
B/7 to B/8	uPVC	300	16	2	0.07	10.83	97	0.285	76.7	5.69	125.1	0.26	91.5	0	91.5	0	91.5	177.9	0.51	1.29	2.53	1.54	46.581	131737	45.477	0	0		0.09	0	0	0.3	46.097	46.097	45.799	1.86	0.45	0.48	
B/8 to B/9	uPVC	300	16	2	0.07	10.96	96.4	0.324	86.8	5.68	125.2	0.3	103.3	0	103.3	0	103.3	177.9		1.46	2.61	1.65		45.477		0.031	0.2		0.11	0.02	0.02	0.24	45.799			1.49	0.48	0.46	
B/9 to B/10	uPVC	300	16.01	1.75	0.07	11.09	95.9	0.363	96.7	5.81	124.1	0.33	115.1	0	115.1	0	115.1	166.4		1.63	2.54	1.77	45.955		44.847		0.83	0.87	0.14	0.11	0.12	0.18		-	45.245	1.13	0.52	0.41	
B/10 to B/11		300	16	2	0.07	11.23	95.4	0.402	106.6	6.09	122	0.37	126.6	0	126.6	0	126.6	177.9		1.79	2.73	1.89	45.698	44.817	-		0.79	0.83	0.16	0.13	0.14	0.31	45.252		44.806	1.94	0.57	0.45	
B/11 to B/12		300	14.92	2	0.07	11.36	94.9	0.441	116.3	6.23	121.2	0.41	138.2	0	138.2	0	138.2	177.9		1.96	2.78	2.03	45.396	44.466		2.041	0.2		0.2	0.04	0.04	0.2		44.766				0.59	
B/12 to B/13	RRJ2	375	18.24	8.96	0.11	11.48	94.5	0.481	126.3	6.35	120.6	0.45	150.2	0	150.2	0	150.2	568.7	0.26	1.36	4.34	1.66	45.104	42.128	40.494		2.08	2.64	0.09	0.2	0.25	1.59	42.752	42.503	40.915	8.7	2.39	2.35	EXISTING PIPE


202								
-								
rgust								
ngu								
AL								
21	2	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20	
ed		ISSUE 80% CLIENT COMMENTS	MP	NDW	RO	MS	20/07/20	B 03 4730 3300
Plotted:		AMENDMENT	DES	DRN	CKD	APR	DATE	P 02 4720 3300

a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.

	SUBDIVISION W	ORKS CERTIFICATE
у -,	Certificate No. Date of Issue Issuing Officer Accreditation No. These plans/specifications issued 28th of Augus	•
D F	OR CONSTRUC	TION APPROVAL
	OSTONE ARCH	PLAN No: 11018512/CC214 2

REDBANK, NORTH RICHMOND DRAINAGE CALCULATIONS

FILE No: 11018512CC214 A1 ORIGINAL SHEET SIZE:

									D	ESIGN ST	ORM 1:1	00yr ARI	HYDROL	DGIC RESU	JLTS												
PIT	PIT	CATCHMENT	IMPERVIOUS	RUNOFF	IMPERVIOUS	IMPERVIOUS	PERVIOUS	PERVIOUS	FULL AREA	FULL AREA	FULL AREA	PARTIAL AREA	PARTIAL AREA	PARTIAL AREA	TOTAL	DIRECT	APPROAC	FLOODED	FLOODED	FLOODED	ROAD	ROAD	CHOKE	INLET	BYPASS	BYPASS	COMMENTS
NAME	ТҮРЕ	AREA	PERCENTAGE	С	TIME Tc	INTENSITY I	TIME Tc	INTENSITY I	TIME Tc	INTENSITY I	CATCHMENT FLOW Qc	TIME Tc	INTENSITY I	CATCHMENT FLOW Qc	CATCHMENT FLOW Qc	FLOW Qd	FLOW Qa	DEPTH d	WIDTH w	(vxd)	GRADE	XFALL	FACTOR	FLOW Qg	FLOW Qb	PIT	
(-)	(-)	(ha)	(%)	(-)	(min)	(mm/hr)	(min)	(mm/hr)	(min)	(mm/hr)	(L/s)	(min)	(mm/hr)	(L/s)	(L/s)	(L/s)	(L/s)	(m)	(m)	(sq.m/s)	(%)	(%)	(-)	(L/s)	(L/s)	(-)	
1/1	1.8 m lintel	0.01	70	0.93	5	219.1	10	167.3	10	167.3	4	5	219.1	5	5	0	5	0.04	0.51	0.02	1	3	0.8	4	1	LOST	
1/2	1.8 m lintel	0.009	85	0.915	5	219.1	10	167.3	10	167.3	4	5	219.1	5	5	0	5	0.04	0.46	0.02	1	3	0.8	4	1	1/3	
1/3	1.8 m lintel	0.019	85	0.915	5	219.1	10	167.3	10	167.3	8	5	219.1	10	10	0	11	0.05	0.72	0.04	3.1	4.2	0.8	9	2	1/4	
1/4	1.8 m lintel	0.021	85	0.915	5	219.1	10	167.3	10	167.3	9	5	219.1	11	11	0	13	0.05	0.76	0.04	3.9	3	0.8	10	3	1/5	
1/5	1.8 m lintel	0.141	85	0.915	5	219.1	10	167.3	10	167.3	60	5	219.1	72	72	0	75	0.08	1.87	0.11	4.2	3	0.8	46	29	1/6	
1/6	1.8 m lintel	0.126	85	0.915	5	219.1	10	167.3	10	167.3	53	5	219.1	64	64	0	93	0.09	2.14	0.11	3.1	3	0.8	57	36	1/7	
1/7	1.8 m lintel	0.122	85	0.915	5	219.1	10	167.3	10	167.3	52	5	219.1	62	62	0	99	0.11	2.79	0.09	1	3	0	-54	152	1/8	
1/8	1.8 m lintel	0.123	85	0.915	5	219.1	10	167.3	10	167.3	52	5	219.1	63	63	0	215	0.14	3.79	0.14	1	3	0.011632	1	214	1/9	
1/9	1.8 m lintel	0.063	85	0.915	5	219.1	10	167.3	10	167.3	27	5	219.1	32	32	0	246	0.13	3.68	0.16	1.5	3	0.592637	83	164	1/10	
1/10	2.4 m lintel sag	0.118	85	0.915	5	219.1	10	167.3	10	167.3	50	5	219.1	60	60	0	224	0.05			2.4	3	0.5	25	199	1/11	
1/11	2.4 m lintel sag	0.05	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	26	26	0	230	0.15			4	4.9	0.5	140	90	LOST	EXISTING ENDCAP
1/12	JP GRATED 900 x 900)																					'			EX	(ISTING PIT (4/3 YEOMANS)
2/1	1.8 m lintel	0.053	85	0.915	5	219.1	10	167.3	10	167.3	23	5	219.1	27	27	0	27	0.06	1.11	0.07	4.1	3	0.8	21	6	3/1	
3/1	1.8 m lintel	0.052	85	0.915	5	219.1	10	167.3	10	167.3	22	5	219.1	27	27	0	33	0.08	1.77	0.05	1	3	0.8	25	8	4/1	
4/1	1.8 m lintel	0.036	85	0.915	5	219.1	10	167.3	10	167.3	15	5	219.1	18	18	0	26	0.07	1.5	0.05	1.3	3	0.8	20	6	1/11	
A/1	SLOPE JUNCTION	0.055	85	0.915	5	219.1	10	167.3	10	167.3	23	5	219.1	28	28	0	28						 '	28	0		
A/2	IAD 900x900	0.054	85	0.915	5	219.1	10	167.3	10	167.3	23	5	219.1	28	28	0	28				3.8		'	28	0		
B/1	IAD 450x450	0.053	85	0.915	5	219.1	10	167.3	10	167.3	22	5	219.1	27	27	0	27						'	27	0		
B/2	SLOPE JUNCTION	0.051	85	0.915	5	219.1	10	167.3	10	167.3	22	5	219.1	26	26	0	26						'	26	0		
B/3	IAD 450x450	0.052	85	0.915	5	219.1	10	167.3	10	167.3	22	5	219.1	26	26	0	26						<u> </u>	26	0		
B/4	SLOPE JUNCTION	0.05	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	26	26	0	26						 '	26	0		
B/5	IAD 450x450	0.052	85	0.915	5	219.1	10	167.3	10	167.3	22	5	219.1	27	27	0	27						 '	27	0		
B/6	SLOPE JUNCTION	0.049	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	25	25	0	25						 '	25	0		
B/7	IAD 450x450	0.049	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	25	25	0	25						 '	25	0		
B/8	SLOPE JUNCTION	0.049	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	25	25	0	25							25	0		
B/9	IAD 600x900	0.049	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	25	25	0	25						 '	25	0		
B/10	IAD 600x900	0.049	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	25	25	0	25						 '	25	0		
B/11	SLOPE JUNCTION	0.049	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	25	25	0	25						<u> </u>	25	0		
B/12	IAD 900x900	0.05	85	0.915	5	219.1	10	167.3	10	167.3	21	5	219.1	26	26	0	26							26	0		EXISTING PIT
B/13	JP GRATED 900 x 900																										EXISTING PIT

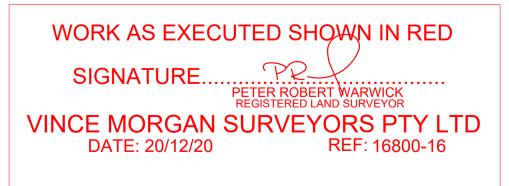
prd prd <th></th> <th>DESI</th> <th>GN S</th> <th>TORM</th> <th>1 1:10</th> <th>00yr A</th> <th>RI HY</th> <th>DRAU</th> <th>ILIC R</th> <th>ESULT</th> <th>S</th> <th></th>																DESI	GN S	TORM	1 1:10	00yr A	RI HY	DRAU	ILIC R	ESULT	S															
NMME IVACE NMAC NVACE NVACE NV	PIPE	PIPE	PIPE	PIPE	PIPE	PIPE	FULL	FULL ARFA	FULL	. FULL A ARFA	PART-AF	E PART-ARE	E PART-ARE	PART-ARE	DIRECT	PEAK	NET BYPASS	PIPE	FLOW	Q/Qcap	FULL PIPE	NORM.	CRIT. DEPTH	U/S PIT	PIPE	PIPE	PIPE	U/S PIT	U/S PIT	PIPE	PIT LOSS WS	E LOSS TO	TAL L	J/S PIT U/	SPIPE D/	S PIPE	HGL	MIN.	U/S	COMMENTS
1 1	NAME	TYPE	DIAMETER	LENGTH	SLOPE	AREA Af			TY SUM (CA FLOW Q			SUM CA	FLOW Qc	FLOW Qp		FLOW Qb	FLOW Q	CAP. Qca	ρ RATIO	VELOCITY	VELOCITY	VELOCITY	GRATE RL	U/S IL	D/S IL	D/S DROP	Ku	Kw	V'HEAD	Ku.V'head (Kw)	.V'hea d)	LOSS	HGL	HGL I	HGL (GRADE	COVER	REEBOAR	
1/2103/5 882 9.75 8.26 8.2 0.11 0.07 8.45 0.07 8.45 0.07 8.45 0.07 8.45 0.07 0.07 0.07 <th< td=""><td>(-)</td><td>(-)</td><td>(mm)</td><td>(m)</td><td>(%)</td><td>(sq.m)</td><td>(min)</td><td>(mm/h</td><td>r) (ha)</td><td>(L/s)</td><td>(min)</td><td>(mm/hr)</td><td>(ha)</td><td>(L/s)</td><td>(L/s)</td><td>(L/s)</td><td>(L/s)</td><td>(L/s)</td><td>(L/s)</td><td>(-)</td><td>(m/s)</td><td>(m/s)</td><td>(m/s)</td><td>(m)</td><td>(m)</td><td>(m)</td><td>(m)</td><td>(-)</td><td>(-)</td><td>(m)</td><td>(m)</td><td>(m) (ı</td><td>n)</td><td>(m)</td><td>(m)</td><td>(m)</td><td>(%)</td><td>(m)</td><td>(m)</td><td></td></th<>	(-)	(-)	(mm)	(m)	(%)	(sq.m)	(min)	(mm/h	r) (ha)	(L/s)	(min)	(mm/hr)	(ha)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(L/s)	(-)	(m/s)	(m/s)	(m/s)	(m)	(m)	(m)	(m)	(-)	(-)	(m)	(m)	(m) (ı	n)	(m)	(m)	(m)	(%)	(m)	(m)	
1/10 1/4 1/6 1/6 0.0 1/6 0.0 1/6 0.0 0.0 0.0 <td>1/1 to 1/2</td> <td>RRJ2</td> <td>375</td> <td>8.06</td> <td>1.01</td> <td>0.11</td> <td>10</td> <td>167.3</td> <td>0.00</td> <td>9 4.3</td> <td>5</td> <td>219.1</td> <td>0.01</td> <td>4.8</td> <td>0</td> <td>4.8</td> <td>-1</td> <td>3.8</td> <td>190.5</td> <td>0.02</td> <td>0.03</td> <td>0.68</td> <td>0.54</td> <td>53.033</td> <td>51.584</td> <td>51.503</td> <td>0.031</td> <td>4.5</td> <td></td> <td>0</td> <td>0</td> <td>0 0.</td> <td>11 5</td> <td>51.959 53</td> <td>1.959 51</td> <td>1.848</td> <td>1.37</td> <td>1.1</td> <td>1.07</td> <td></td>	1/1 to 1/2	RRJ2	375	8.06	1.01	0.11	10	167.3	0.00	9 4.3	5	219.1	0.01	4.8	0	4.8	-1	3.8	190.5	0.02	0.03	0.68	0.54	53.033	51.584	51.503	0.031	4.5		0	0	0 0.	11 5	51.959 53	1.959 51	1.848	1.37	1.1	1.07	
1/4 la 1/s 84/2 375 81/2	1/2 to 1/3	RRJ2	375	16.26	3.82	0.11	10.07	/ 166.9	0.01	3 8.3	5.07	218.1	0.02	9.5	0	9.5	-1.9	7.6	371.4	0.02	0.07	1.34	0.64	53.021	51.473	50.852	0.178	1.82	2.46	0	0	0 0	.8 5	51.849 53	1.848 51	1.051	4.9	1.13	1.17	
1/5 to 1/6 88/2 35/5 32.4 38.5 0.11 0.10 0.12 0.11 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.11 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.11 0.10 0.11 0.11 0.11 0.11 0.11 0.10 0.11 0.11 0.10 0.11 0.11 0.11 0.11 0.10 0.11 0.11 0.11 0.10 0.11 0.11 0.11 </td <td>1/3 to 1/4</td> <td>RRJ2</td> <td>375</td> <td>24.21</td> <td>3.02</td> <td>0.11</td> <td>10.2</td> <td>166</td> <td>0.03</td> <td>5 16.3</td> <td>5.14</td> <td>217.2</td> <td>0.03</td> <td>19.1</td> <td>0</td> <td>19.1</td> <td>-3.1</td> <td>16</td> <td>330.2</td> <td>0.05</td> <td>0.14</td> <td>1.54</td> <td>0.79</td> <td>52.22</td> <td>50.674</td> <td>49.943</td> <td>0.031</td> <td>2.16</td> <td>2.78</td> <td>0</td> <td>0</td> <td>0 0.</td> <td>69 5</td> <td>51.052 53</td> <td>1.049 50</td> <td>).356</td> <td>2.86</td> <td>1.1</td> <td>1.17</td> <td></td>	1/3 to 1/4	RRJ2	375	24.21	3.02	0.11	10.2	166	0.03	5 16.3	5.14	217.2	0.03	19.1	0	19.1	-3.1	16	330.2	0.05	0.14	1.54	0.79	52.22	50.674	49.943	0.031	2.16	2.78	0	0	0 0.	69 5	51.052 53	1.049 50).356	2.86	1.1	1.17	
1 fr 0 1/7 8/12 9/7 32 1.57 0.11 10.12 15.8 0.04 28.8 43.3 15.2 1.61 1.64 1.63 1.64 0.08 0.08 0.08 0.16 0.16 0.14 0.28 0.21 0.27 0.21 0.21 0.23 0.21 0.21 0.21 <	1/4 to 1/5	RRJ2	375	40.56	3.77	0.11	10.4	164.7	0.15	4 70.6	5.19	216.4	0.14	84.4	0	84.4	-3.5	80.9	369.2	0.22	0.73	2.68	1.29	51.374	49.913	48.382	0.147	2.49	2.77	0.03	0.07 (0.08 1.	53 5	50.364 50	0.288 48	3.756	3.78	1.1	1.01	
1/10 1/8 BUZ 375 6.3 1 0.11 1.55 7.6 7.0 7.6 7.6 7.6	1/5 to 1/6	RRJ2	375	33.44	3.85	0.11	10.74	162.6	0.33	2 149.8	5.38	213.7	0.3	179.3	0	179.3	-35.7	143.6	373.1	0.38	1.3	3.16	1.63	49.692	48.235	46.946	0.202	1.7	2.07	0.09	0.15 ().18 0.	31 🛛	18.788 4	48.61 48	3.299	0.93	1.1	0.9	
1/8 0 1/9 RR12 375 16.35 1 0.11 11.55 15.74 0.719 31.44 6.19 0.374 0.227 15.9 15.0 1.5 2.6 3.73 37.63 1.5 2.6 3.73 37.63 1.5 2.6 3.73 37.63 57.5 37.5 1.5 2.6 3.73 37.63 57.5 37.5 37.5 37.5 <	1/6 to 1/7	RRJ2	375	32	1.57	0.11	11.02	2 160.8	0.44	7 199.6	5.66	209.8	0.41	238.3	0	238.3	-43.3	195	238.5	0.82	1.77	2.41	1.94	48.375	46.744	46.24	0.031	0.88		0.16	0.14 (0.14 0.	34 🛛 🖉	18.299 48	8.159 47	/.822	1.05	1.1	0.08	
19 10 110 110 156 0.81 320 0.70 400 0.70 20.7 20.7 400 0.70 20.7	1/7 to 1/8	RRJ2	375	32	1	0.11	11.29	159.1	0.60	5 268	5.62	210.4	0.55	319.7	0	319.7	-161.2	158.5	190.3	0.83	1.43	1.93	1.71	47.822	46.21	45.889	0.031	0.5	0.58	0.11	0.05 (0.06 0.	22 🛛	47.337 4	7.276 47	/.053	0.7	1.19	0.49	
1/101 c)/11 8R/2 75 1/25 1/10 1/10 1/10<	1/8 to 1/9	RRJ2	375	16.35	1	0.11	11.55	5 157.4	0.71	9 314.4	6.19	203.3	0.66	374.6	0	374.6	-222.7	151.9	190.3	0.8	1.38	1.91	1.67	47.502	45.859	45.695	0.031	0.23		0.1	0.02 (0.02 0	.1 2	47.053 4	7.031 46	927.ز	0.64	1.22	0.45	
1/11 to 1/12 882 3.11 10.20 0.11 10.20 0.15 0.06 0.84 0.40 0.05 0.66	1/9 to 1/10	RRJ2	375	20.45	1.3	0.11	11.69	156.5	0.81	352	6.33	202	0.75	420	0	420	-170.2	249.7	216.3	1.15	2.26	2.26	2.33	47.301	45.665	45.4	0.031	1.1	1.15	0.26	0.29	0.3 0.	35 🛛	46.939 4	46.64 46	287.ز	1.73	1.1	0.36	
2/1 to 1/5 8R2 3/5 9 19 1.49 0.11 0 0.73 0.04 2.2 5 2 191 0.04 2.72 6 2.72 6 0.12 0.15 0.10 0.02 0.02 0.02 0.02	1/10 to 1/11	RRJ2	375	17.45	2.52	0.11	11.86	5 155.4	0.91	7 396.1	6.46	200.8	0.85	473.2	0	473.2	-205.8	267.4	301.7	0.89	2.42	3.08	2.48	46.879	45.37	44.93	1.497	1.81	1.96	0.3	0.54 (0.59 0.	38 🛛	46.332 4	5.745 45	367.د	2.16	1.1	0.55	
3/1 1	1/11 to 1/12	RRJ2	375	13.11	10.29	0.11	12.01	. 154.5	0.96	3 413.4	6.34	201.9	0.88	494	0	494	-91.4	402.5	609.5	0.66	3.64	5.89	3.65	46.359	43.434	42.085		1.44	1.72	0.68	0.98 2	17 0.	59 🛛	45.556 44	4.388 4	43.8	4.49	1.98	0.8	EXISTING PIPELINE
4/10 1/9 8R2 375 9.43 101 0.11 100 167.3 0.03 15.2 5 219.1 0.03 18.2 0 18.2 0.1 0.11 0.18 0.15 4.4 0 0.10 0.01 0.01 0.01 0.01<	2/1 to 1/5	RRJ2	375	9.19	1.49	0.11	10	167.3	0.04	9 22.6	5	219.1	0.04	27.2	0	27.2	-6	21.2	232	0.09	0.19	1.31	0.85	49.88	48.402	48.265	0.031	9.7		0	0.02 (0.02 0.	02 🛛	48.795 48	8.777 48	3.756	0.23	1.1	1.08	
A/1 to A/2 uPVC 225 179 502 0.04 107 107 2.0 2.0 0.04 0.01 0.01 0.01 </td <td>3/1 to 1/7</td> <td>RRJ2</td> <td>375</td> <td>8.85</td> <td>1.01</td> <td>0.11</td> <td>10</td> <td>167.3</td> <td>0.04</td> <td>3 22.2</td> <td>5</td> <td>219.1</td> <td>0.04</td> <td>26.7</td> <td>0</td> <td>26.7</td> <td>-1.8</td> <td>25</td> <td>190.6</td> <td>0.13</td> <td>0.23</td> <td>1.19</td> <td>0.89</td> <td>47.86</td> <td>46.404</td> <td>46.315</td> <td>0.105</td> <td>2.93</td> <td></td> <td>0</td> <td>0.01 (</td> <td>0.01</td> <td><u>م ر</u></td> <td>47.831 47</td> <td>7.824 47</td> <td>/.822</td> <td>0.02</td> <td>1.1</td> <td>0.03</td> <td></td>	3/1 to 1/7	RRJ2	375	8.85	1.01	0.11	10	167.3	0.04	3 22.2	5	219.1	0.04	26.7	0	26.7	-1.8	25	190.6	0.13	0.23	1.19	0.89	47.86	46.404	46.315	0.105	2.93		0	0.01 (0.01	<u>م ر</u>	47.831 47	7.824 47	/.822	0.02	1.1	0.03	
A/2 0 1/4 uPV 300 5.5 2.9 0.07 10.5 16.4 0.1 5.1 2.17 0.09 5.2 0 5.2 0 5.2 0 5.2 0 5.2 0 5.2 10.1 0.02 0.03 0.05 0.06 0.06 5.2 0.03 0.04 0.05 0.06 5.2 0.04 0.04 0.03 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0	4/1 to 1/9	RRJ2	375	9.43	1.01	0.11	10	167.3	0.03	3 15.2	5	219.1	0.03	18.2	0	18.2	2.1	20.3	190.7	0.11	0.18	1.12	0.84	47.375	45.913	45.818	0.153	4.4		0	0.01 (0.01	<u>م ر</u>	46.935 40	6.928 46	927.ز	0.01	1.1	0.44	
b/1 to b/2 1 b/2	A/1 to A/2	uPVC	225	17.92	5.02	0.04	10	167.3	0.05	23.3	5	219.1	0.05	28	0	28	0	28	130.9	0.21	0.7	2.62	1.08	52.649	51.968	51.068	0.147	0.2		0.03	0.01 (0.01 0.	91 5	52.198 52	2.193 51	276	5.12	0.45	0.45	
B2 to B3 uPV 25 1.7.9 4.14 0.04 10.3 166.5 0.09 43.8 51.3 21.2 0.09 52.5 0 52.5 11.8 0.4 1.32 2.9 1.47 50.37 49.43 4.7.0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 0.45 <t< td=""><td>A/2 to 1/4</td><td>uPVC</td><td>300</td><td>5.25</td><td>2.29</td><td>0.07</td><td>10.15</td><td>5 166.4</td><td>0.1</td><td>46.1</td><td>5.15</td><td>217</td><td>0.09</td><td>55.2</td><td>0</td><td>55.2</td><td>0</td><td>55.2</td><td>190.1</td><td>0.29</td><td>0.78</td><td>2.33</td><td>1.23</td><td>51.714</td><td>50.922</td><td>50.802</td><td>0.89</td><td>1.74</td><td>2.02</td><td>0.03</td><td>0.05 (</td><td>0.06 0.</td><td>06 5</td><td>51.285 53</td><td>1.222 50</td><td>).913</td><td>5.89</td><td>0.45</td><td>0.43</td><td></td></t<>	A/2 to 1/4	uPVC	300	5.25	2.29	0.07	10.15	5 166.4	0.1	46.1	5.15	217	0.09	55.2	0	55.2	0	55.2	190.1	0.29	0.78	2.33	1.23	51.714	50.922	50.802	0.89	1.74	2.02	0.03	0.05 (0.06 0.	06 5	51.285 53	1.222 50).913	5.89	0.45	0.43	
b 3 b 0 /b 4 u VC 2 25 1 6.1 1 4.1 0.40 1 6.5 0 4.1	B/1 to B/2	uPVC	225	16	4.23	0.04	10	167.3	0.04	3 22.4	5	219.1	0.04	26.9	0	26.9	0	26.9	120.1	0.22	0.68	2.44	1.06	50.833	50.139	49.462	0.031	6.31		0.02	0.15 ().15 0.	69 5	50.512 50	0.364 49).675	4.31	0.45	0.32	
B/4 to B/5 UPV 2.5 1.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.44 0.44 0.4	B/2 to B/3	uPVC	225	17.49	4.14	0.04	10.13	3 166.5	0.09	5 43.8	5.13	217.2	0.09	52.5	0	52.5	0	52.5	118.9	0.44	1.32	2.9	1.47	50.137	49.432	48.707	0.034	0.2		0.09	0.02 (0.02 0	.5 ⊿	49.675 49	9.657 49).158	2.85	0.45	0.46	
b/s 0 //s 0 /	B/3 to B/4	uPVC	225	16.61	4.14	0.04	10.28	3 165.5	0.14	2 65.3	5.28	215.2	0.13	78.1	0	78.1	0	78.1	118.8	0.66	1.96	3.19	2	49.367	48.674	47.986	0.031	1.32	1.37	0.2	0.26 ().27 0.	37 🛛 🖉	49.168 48	8.899 4	8.53	2.22	0.45	0.2	
B(5 B) WV 225 16 3.95 0.04 1.05 0.05 1.15 0.05 1.15 0.15 1.15 0.15 1.15 0.15 1.15 0.	B/4 to B/5	uPVC	225	17.09	3.99	0.04	10.42	2 164.7	0.18	8 86	5.28	215.1	0.17	102.7	0	102.7	0	102.7	116.7	0.88	2.58	3.31	2.59	48.661	47.955	47.273	0.036	0.2		0.34	0.07 ().07 0.	53	48.53 4	8.462 47	/.934	3.09	0.45	0.13	
B/T D B/S UPV 3.0 1.0 1.0.3 1.0.3 1.0.4 1.0.3 1	B/5 to B/6	uPVC	225	16	4.11	0.04	10.56	5 163.7	0.23	5 107.2	5.43	213.1	0.22	127.8	0	127.8	0	127.8	118.4	1.08	3.21	3.21	3.22	47.934	47.238	46.58	0.031	0.76		0.31	0.23 (0.23 0.	45 ⊿	17.934 4	7.702 47	/.257	2.78	0.45	0	
BARD MPV 300 16 1.58 0.07 10.90 16.10 0.37 16.50 0.30 16.50 0.03 16.50 0.03 16.50 0.03 16.50 0.05 0.05 <	B/6 to B/7	uPVC	225	16	3.95	0.04	10.69	162.9	0.28	126.9	5.56	211.2	0.26	151	0	151	0	151	116.1	1.3	3.8	3.8	3.8	47.257	46.55	45.918	0.119	0.2		0.42	0.08 (0.08 0.	61 🛛	47.257 4	7.173 46	564.	3.81	0.45	0	
Mark 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B/7 to B/8	uPVC	300	16	1.91	0.07	10.83	3 162	0.32	5 146.4	5.69	209.4	0.3	173.8	0	173.8	0	173.8	173.9	1	2.46	2.8	2.49	46.581	45.799	45.493	0.031	0		0.31	0	0 0.	31 🛛	46.564 40	6.564 46	j.258	1.91	0.45	0.02	
	B/8 to B/9	uPVC	300	16	1.58	0.07	10.96	5 161.2	0.37	165.5	5.68	209.6	0.34	196.3	0	196.3	0	196.3	158.2	1.24	2.78	2.78	2.79	46.258	45.463	45.21	0.031	0.2		0.26	0.05 (0.05 0.	26 🛛	16.258 4	6.206 45	.951	1.6	0.45	0	
B/11 to B/12 uPVC 300 14.92 1.68 0.07 11.36 158.6 0.504 221.9 6.23 0.47 262.6 0 262.6 163.1 1.61 3.72 3.72 45.396 44.613 44.362 0.927 0.14 0.14 0.15 44.913 44.66 1.7 0.45 0.34	B/9 to B/10	uPVC	300	16.01	1.43	0.07	11.09	160.3	0.41	4 184.6	5.81	207.7	0.38	218.6	0	218.6	0	218.6	150.4	1.45	3.09	3.09	3.1	45.955	45.18	44.951	0.031	0.64	0.66	0.16	0.1 (0.11 0.	16 🛛 🖉	45.955 4	5.848 45	J.689	0.99	0.45	0	
	B/10 to B/11	uPVC	300	16	1.74	0.07	11.23	159.5	0.45	203.4	6.09	204.2	0.42	240.5	0	240.5	0	240.5	165.8	1.45	3.4	3.4	3.41	45.698	44.921	44.643	0.031	0.61	0.63	0.4	0.24 ().25 0.	39 🛛 🖉	45.698 4	5.447 45	.054	2.46	0.45	0	
B/12 to B/13 RRJ2 375 18.24 15.96 0.11 11.48 157.8 0.55 241 6.35 201.8 0.51 285.3 0 285.3 0 285.3 0 285.3 0 285.3 0.55 241 0.57 EXISTING PIPE	B/11 to B/12	uPVC	300	14.92				5 158.6	0.50	4 221.9	6.23	203	0.47	262.6	0	262.6	0	262.6	163.1	1.61	3.72	3.72	3.72	45.396	44.613	44.362	0.927	0.2		0.7	0.14 (0.14 0.	25 🛛	15.054 4	4.913 4	4.66	1.7	0.45	0.34	
	B/12 to B/13	RRJ2	375	18.24	15.96	0.11	11.48	3 157.8	0.55	241	6.35	201.8	0.51	285.3	0	285.3	0	285.3	759.1	0.38	2.58	6.38	2.62	45.104	43.436	40.525		1.75	2.12	0.34	0.6 ().72 2.	31 🛛	44.531 43	3.811 4	¥1.5	12.67	1.1	0.57	EXISTING PIPE

SUBDIVISION WORKS CERTIFICATE

Certificate No. Date of Issue Issuing Officer 20130299SW51 28/08/2020 D. Restr BDC3367

Accreditation No.

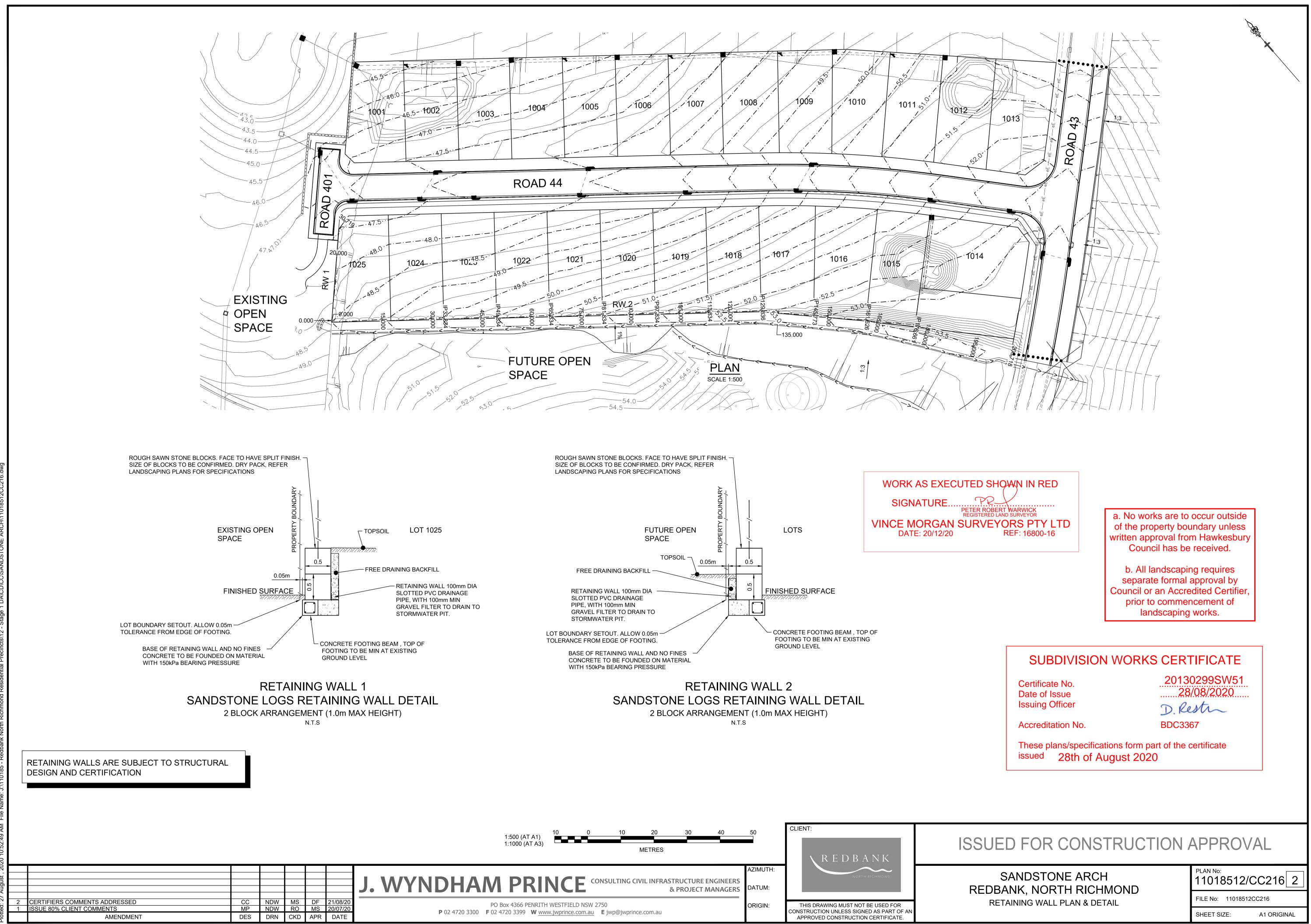
These plans/specifications form part of the certificate issued 28th of August 2020

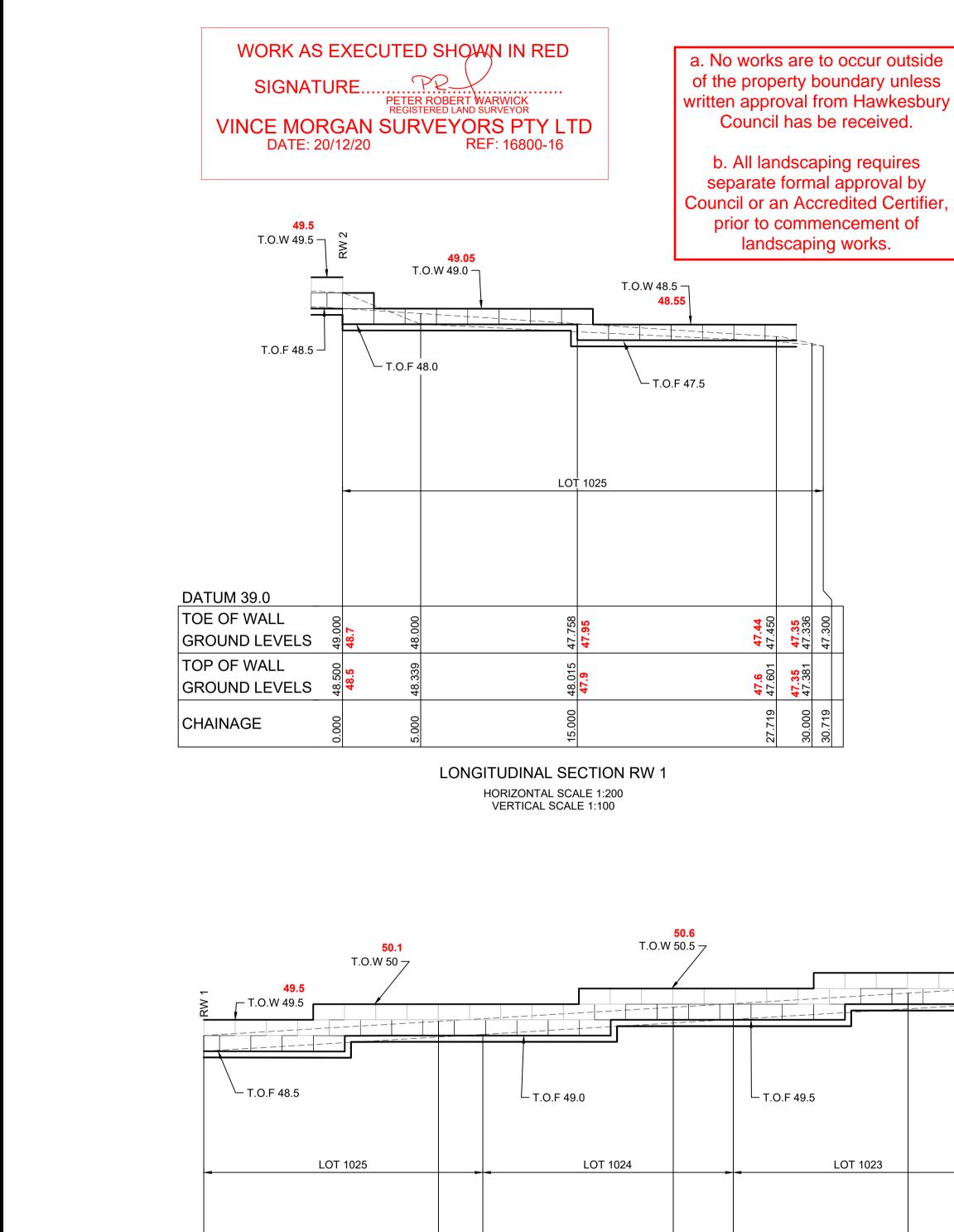

a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.

							J.	WYNDHAN
2 1	CERTIFIERS COMMENTS ADDRESSED ISSUE 80% CLIENT COMMENTS	CC MP	NDW NDW	MS RO	DF MS	21/08/20 20/07/20		PC
	AMENDMENT	DES	DRN	CKD	APR	DATE		P 02 4720 3300 F 02

DESIGN STOPN 1.100 Vr ADI UVDDALILIC DESLILTS


CLIENT: \mathbf{X} R E D B A N K AZIMUTH: **V PRINCE** CONSULTING CIVIL INFRASTRUCTURE ENGINEERS & PROJECT MANAGERS DATUM: THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE. PO Box 4366 PENRITH WESTFIELD NSW 2750 ORIGIN: **F** 02 4720 3399 **W** <u>www.jwprince.com.au</u> **E** jwp@jwprince.com.au


ISSUED FOR CONSTRUCTION APPROVAL

SANDSTONE ARCH REDBANK, NORTH RICHMOND DRAINAGE CALCULATIONS

PLAN No: 11018512/CC2152

FILE No: 11018512CC215 A1 ORIGINAL SHEET SIZE:

DATUM 40.0

TOE OF WALL

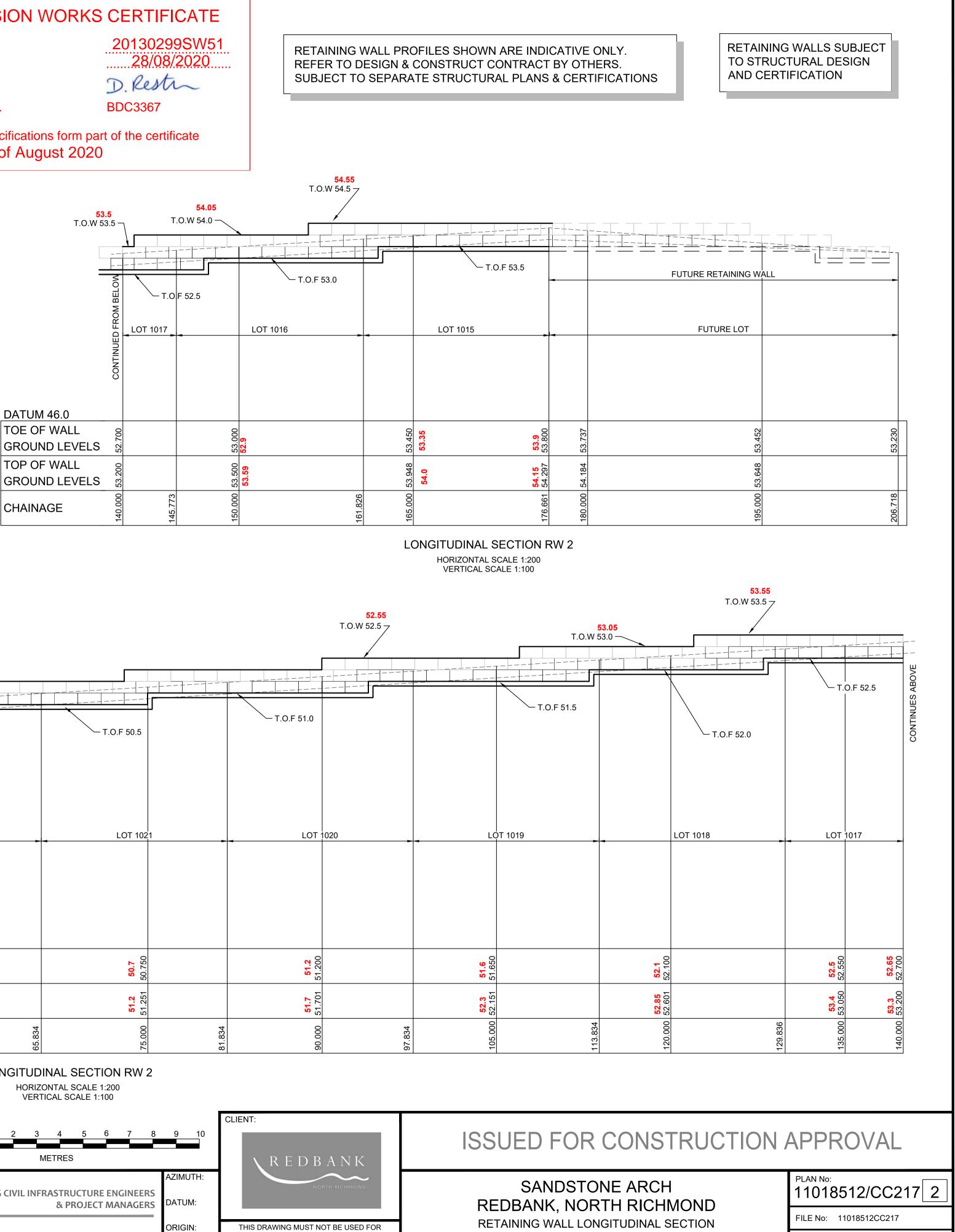
TOP OF WALL

CHAINAGE

GROUND LEVELS 🐳 🗳

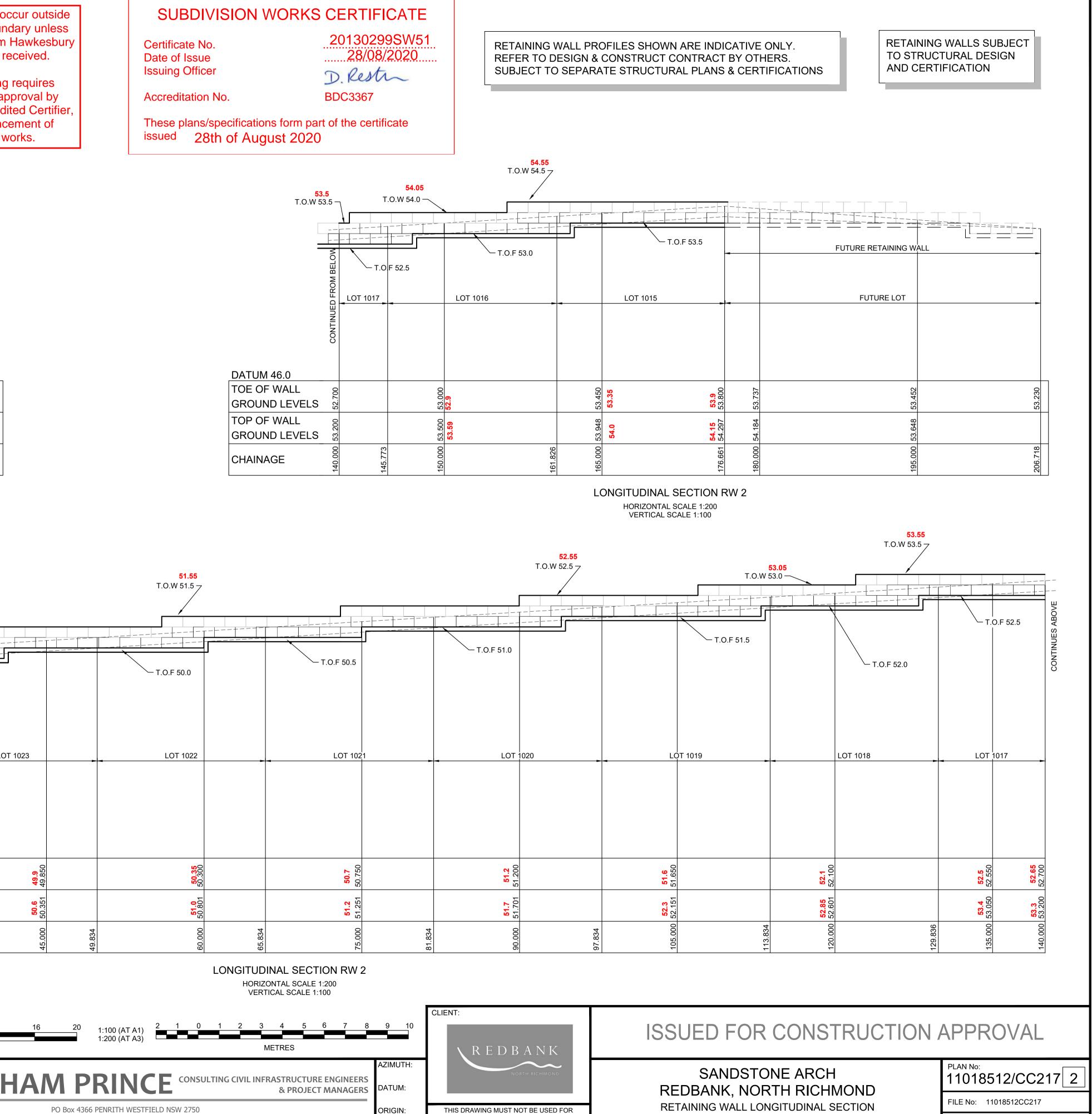
GROUND LEVELS 🐳 🍣

			1:200 (/ 1:400 (/		4	2 0		4	8	12	16
				MET	RES						
					ZRI	DII					
							J.		Y IN	DH	AI
2	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20					
1	ISSUE 80% CLIENT COMMENTS	MP	NDW	RO	MS	20/07/20				P 02 4720	2200 1
	AMENDMENT	DES	DRN	CKD	APR	DATE				F UZ 4720	3300 1

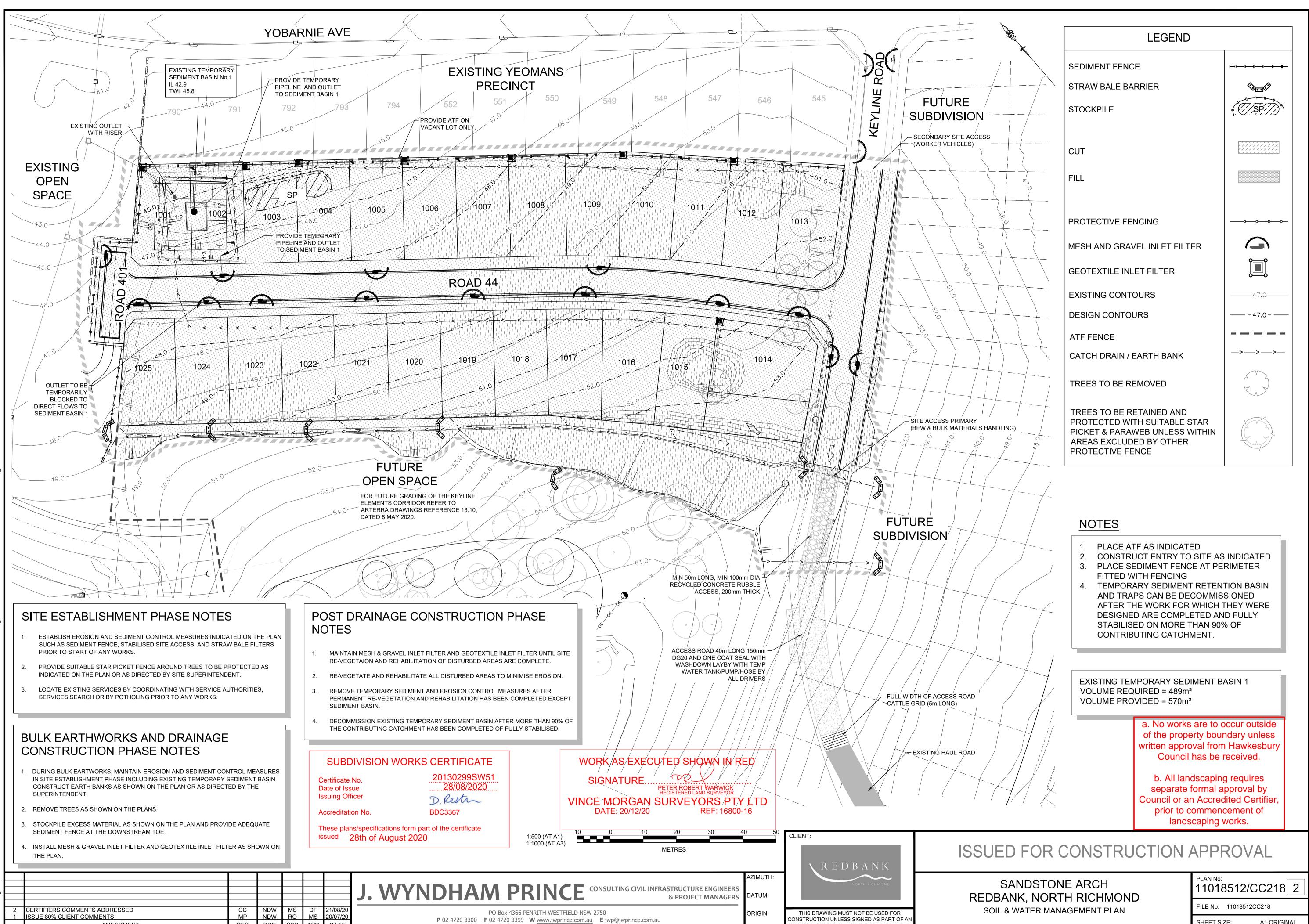

.**45**

49.

50.2 19.901


834

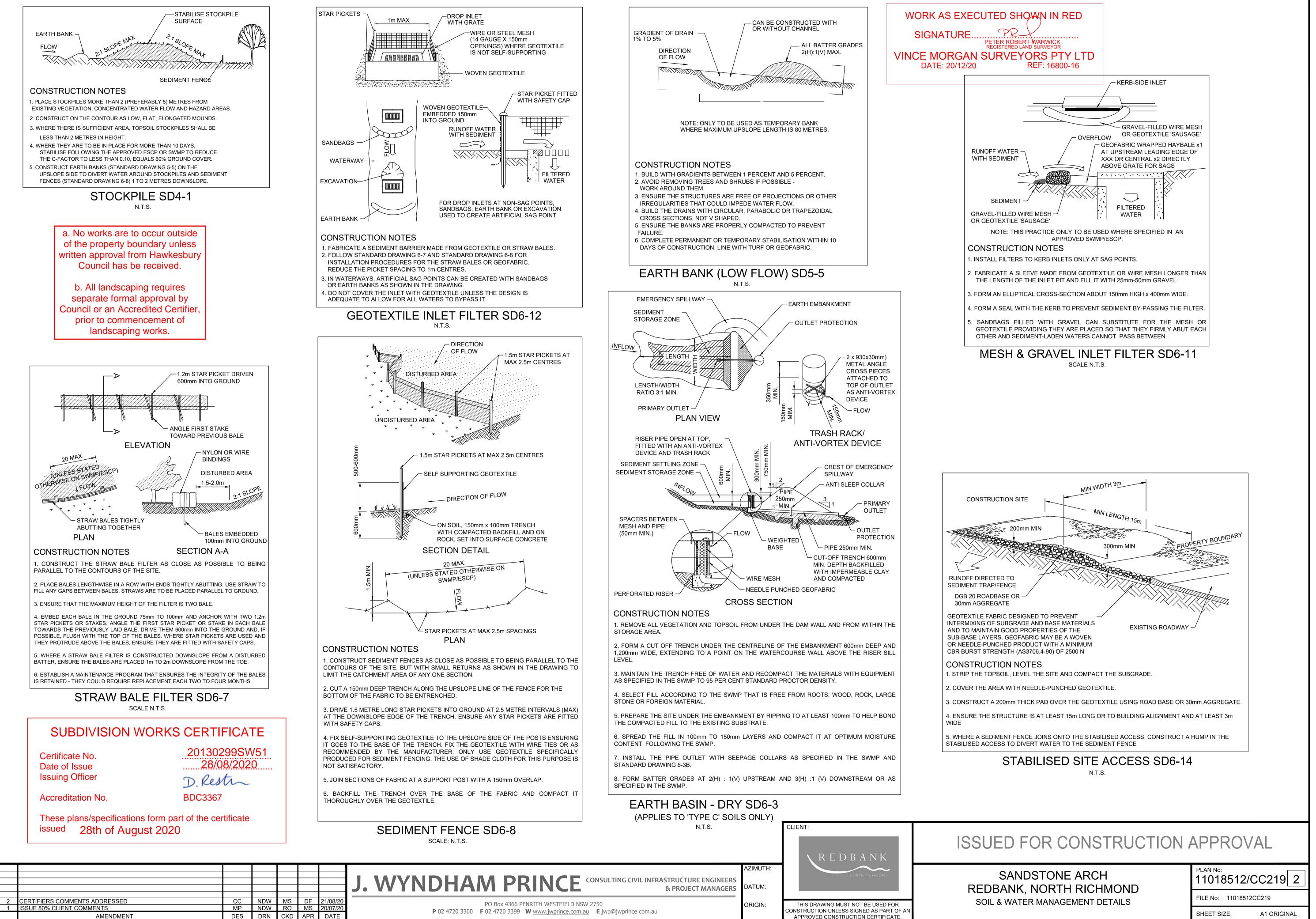
20130299SW51


SHEET SIZE:

A1 ORIGINAL

F 02 4720 3399 **W** <u>www.jwprince.com.au</u> **E** jwp@jwprince.com.au

CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE.


APPROVED CONSTRUCTION CERTIFICATE.

AMENDMENT

DRN CKD APR DATE

DES

SHEET SIZE:

SOIL AND WATER MANAGEMENT NOTES

OFNEDAL NOTEO

GE	ENERAL NOTES:	
1.	ALL EROSION AND SEDIMENT CONTROL MEASURES, INCLUDING REVEGETATION AND STORAGE OF SOIL AND TOPSOIL, SHALL BE IMPLEMENTED TO THE REQUIREMENTS OF THE BLUE BOOK (CHECK DENOTE & DATE)	17.
2.	TOPSOIL FROM ALL AREAS TO BE DISTURBED SHALL BE STOCKPILED AND LATER RESPREAD TO AID REVEGETATION IN THOSE AREAS.	18.
3.	ALL DRAINAGE WORKS SHALL BE CONSTRUCTED AND STABILISED AS EARLY AS POSSIBLE DURING DEVELOPMENT.	19.
4.	ALL TAIL-OUT DRAINS SHALL BE COUCH GRASSED AND TRAPEZOIDAL IN SECTION. STAKED STRAW BALES SHALL BE PLACED AS A SEDIMENT CONTROL DEVICE WHERE REQUIRED.	
5.	VEHICULAR TRAFFIC SHALL BE CONTROLLED DURING DEVELOPMENT CONFINING ACCESS WHERE POSSIBLE TO PROPOSED OR EXISTING ROAD ALIGNMENTS. AREAS TO BE LEFT UNDISTURBED SHALL BE MARKED OFF.	20.
6.	ROADS SHALL BE PAVED AS EARLY AS POSSIBLE AFTER FORMATION.	
7.	DISTURBANCE OF VEGETATION SHALL BE LIMITED TO FILL AREAS, ROADWAYS AND DRAINAGE LINES. NO LOT GRADING SHALL BE CARRIED OUT IN UNDISTURBED AREAS WITHOUT CONSULTATION WITH SITE SUPERINTENDENT.	
8.	ALL DISTURBED AREAS SHALL BE REVEGETATED AS SOON AS THE RELEVANT WORKS ARE COMPLETED.	21.
9.	ALL SEDIMENT BASINS AND TRAPS SHALL BE CLEANED WHEN THE STRUCTURES ARE A MAXIMUM 60% FULL OF SOLID MATERIALS, INCLUDING DURING THE MAINTENANCE PERIOD.	22.
10.	THE SOIL AND WATER MANAGEMENT PLAN IS TO BE READ IN CONJUNCTION WITH THE ENGINEERING PLANS, AND COUNCIL'S WRITTEN GUIDELINES FOR THE DEVELOPMENT OF LAND.	
11.	CONTRACTORS SHALL ENSURE THAT ALL SOIL AND WATER MANAGEMENT WORKS ARE UNDERTAKEN AS SPECIFIED ON THE PLAN AND IN ACCORDANCE WITH THE GUIDELINES SHOWN IN "MANAGING URBAN	23.

- 12. ALL CONTRACTORS AND SUBCONTRACTORS ARE RESPONSIBLE FOR REDUCING THE SOIL EROSION AND POLLUTION OF DOWNSLOPE AREAS.
- 13. THE SOIL EROSION HAZARD ON THE SITE IS TO BE KEPT AS LOW AS POSSIBLE AND GENERALLY IN ACCORDANCE WITH THE FOLLOWING SCHEDULE:

STORMWATER - SOILS AND CONSTRUCTION 4TH EDITION" ("THE BLUE BOOK").

LAND USE	LIMITATION	COMMENTS
CONSTRUCTION AREAS	DISTURBANCE TO BE NO FURTHER THAN 5m (PREF 2m) FROM THE EDGE OF ANY ESSENTIAL ENGINEERING ACTIVITY AS SHOWN ON THESE PLANS	ALL SITE WORKERS WILL CLEARLY RECOGNISE THESE ZONES - WHERE APPROPRIATE THE CONSTRUCTION AREAS ARE TO BE IDENTIFIED WITH BARRIER FENCING (DOWNSLOPE) OR SIMILAR MATERIAL.
ACCESS AREAS	LIMITED TO A MAXIMUM WIDTH OF 10m	THE SITE MANAGER SHALL DETERMINE AND MARK THE LOCATION OF THESE ZONES ONSITE. THEY CAN VARY IN POSITION TO BEST CONSERVE THE EXISTING VEGETATION AND PROTECT DOWNSTREAM AREAS WHILE BEING CONSIDERATE OF THE NEEDS OF EFFICIENT WORKS ACTIVITIES. ALL SITE WORKERS SHALL CLEARLY RECOGNISE THEIR BOUNDARIES. WHERE APPROPRIATE THE ACCESS AREAS ARE TO BE MARKED WITH BARRIER MESH, SEDIMENT FENCING OR SIMILAR MATERIALS.
REMAINING LANDS	ENTRY PROHIBITED EXCEPT FOR ESSENTIAL THINNING OF PLANT GROWTH	THINNING OF GROWTH MAY BE REQUIRED FOR FIRE HAZARD REDUCTION.

NOTE

WORKS WITHIN WATERWAYS AND CREEKS SHALL BE RESTRICTED AS DIRECTED - ALL LANDS WITHIN CREEKS AND WATERWAYS SHALL HAVE A GROUNDCOVER MORE THAN 70%, USING MATERIALS THAT CAN CATER FOR CONCENTRATED FLOWS

- 14. WORKS ARE TO BE UNDERTAKEN IN THE FOLLOWING SEQUENCE / EACH SUBSEQUENT STAGE IS NOT TO COMMENCE UNTIL THE PREVIOUS ONE IS COMPLETE:-
- a. INSTALL ALL BARRIER AND SEDIMENT FENCING WHERE SHOWN ON THE PLAN AND TO DETAIL(SD) 6-7.
- b. CONSTRUCT STABILISED SITE ACCESS AS SHOWN ON THE PLAN AND TO DETAIL (SD) 6-14.
- c. CONSTRUCT LOW FLOW EARTH BANKS WHERE SHOWN ON THE PLAN AND TO DETAIL (SD) 4-1. d. PROVIDE TEMP. ACCESS TO THE SEDIMENT BASIN(S)AND PROTECT THIS WITH SEDIMENT FENCING (SD) 6-8 OR BARRIER FENCING AND EARTH BANKS (SD) 5-5..
- e. PLACE SEDIMENT FENCING (SD) 6-8 DOWNSLOPE OF LANDS TO BE DISTURBED FOR CONSTRUCTION OF THE SEDIMENT BASINS. f. CONSTRUCT SEDIMENT BASIN(S) GENERALLY IN ACCORDANCE WITH (SD) 6-4
- g. STABILISE LAND SURFACES DISTURBED BY CONSTRUCTION OF THE SEDIMENT BASIN(S) AS SOON AS
- FINAL LEVELS ARE ESTABLISHED h. CLEAR THE SITE AND STRIP AND STOCKPILE THE TOPSOIL IN THE LOCATIONS SHOWN ON THE PLAN OR AS DIRECTED BY THE SITE SUPERINTENDENT TO DETAIL (SD) 4-1.
- i. UNDERTAKE ALL ESSENTIAL CONSTRUCTION WORKS. GRADE LOT AREAS TO FINAL GRADES AND APPLY PERMANENT STABILISATION (LANDSCAPING) WITHIN 14
- DAYS OF COMPLETION OF CONSTRUCTION WORKS. k. REMOVE TEMPORARY EROSION CONTROL MEASURES AFTER THE PERMANENT LANDSCAPING HAS BEEN COMPLETED.
- 15. CLEARLY VISIBLE BARRIER FENCING SHALL BE INSTALLED WHERE DIRECTED BY THE SITE SUPERINTENDENT TO CONTROL AND PROHIBIT UNNECESSARY SITE DISTURBANCE
- 16. EARTH BATTERS SHALL BE CONSTRUCTED WITH AS LOW A GRADIENT AS PRACTICABLE BUT NO STEEPER THAN:-
- a. 3(h) 1(v) WHERE SLOPE LENGTH IS BETWEEN 10m AND 12m
- b. 4(h) 1(v) WHERE SLOPE LENGTH IS BETWEEN 12m AND 18m
- c. 5(h) 1(v) WHERE SLOPE LENGTH IS BETWEEN 18m AND 27m d. 6(h) - 1(v) WHERE SLOPE LENGTH IS GREATER THAN 27m

SLOPE LENGTHS CAN BE SHORTENED BY USING LOW FLOW EARTH BANKS AS CATCH DRAINS ABOVE THE EARTH BATTER AREA.

							J. WYNDHA
2	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20	
1	ISSUE 80% CLIENT COMMENTS	MP	NDW	RO	MS	20/07/20	P 02 4720 3300
	AMENDMENT	DES	DRN	CKD	APR	DATE	F 02 4720 5500

PROTECTION FROM EROSIVE FORCES SHALL BE UNDERTAKEN ON ALL LANDS. GROUND COVER TO BE IN PLACE WITHIN 10 WORKING DAYS FROM COMPLETION OF FORMATION AND BEFORE THEY ARE ALLOWED TO CARRY ANY CONCENTRATED FLOWS.

TEMPORARY GROUND COVER SHOULD BE MINIMUM 70%. FOOT AND VEHICULAR TRAFFIC SHALL BE KEPT AWAY FROM REHABILITATED AREAS.

WHERE POSSIBLE THE CONSTRUCTION PROGRAM IS TO SCHEDULE WORKS SUCH THAT LAND DISTURBANCE ACTIVITIES ARE COMPLETED IN LESS THAN 6 MONTHS. REVEGETATION WORKS MUST BE CARRIED OUT AS STIPULATED IN THE RELEVANT COUNCIL GUIDELINES / SPECIFICATIONS SUCH THAT A SATISFACTORY GROUND COVER IS PROVIDED TO AT LEAST 60% OF THE DISTURBED AREA WITHIN 10 DAYS AND AT LEAST 70% OF THE DISTURBED AREA WITHIN A FURTHER 60 DAYS.

SEDIMENT FENCES (SD) 6-8 SHALL:-

- a. BE INSTALLED WHERE SHOWN ON THE PLAN AND AS DIRECTED AT THE DISCRETION OF THE SITE SUPERINTENDENT DURING THE COURSE OF CONSTRUCTION TO CONTAIN THE COARSER SEDIMENT FRACTIONS AS NEAR AS POSSIBLE TO THEIR SOURCE.
- b. HAVE A CATCHMENT AREA NOT EXCEEDING 720sq.m, AND A STORAGE DEPTH OF AT LEAST 0.6m. c. PROVIDE AN UPSLOPE RETURN OF 1m AT INTERVALS ALONG THE FENCE.

STOCKPILES (SD) 4-1 SHALL BE LOCATED AS SHOWN ON THE PLANS AND AT THE DISCRETION OF THE SITE SUPERINTENDENT.

DURING WINDY WEATHER LARGE UNPROTECTED AREAS ARE TO BE KEPT MOIST (NOT WET) BY SPRINKLING WITH WATER TO KEEP DUST UNDER CONTROL. IN THE EVENT WATER IS NOT AVAILABLE IN SUFFICIENT QUANTITIES SOIL BINDERS AND/OR DUST RETARDANTS SHALL BE USED OR THE SURFACE SHALL BE LEFT IN A CLODDY STATE THAT RESISTS REMOVAL BY WIND.

STOCKPILES SHALL NOT BE LOCATED WITHIN 5m OF HAZARD AREAS. INCLUDING LIKELY AREAS OF HIGH VELOCITY FLOWS SUCH AS WATERWAYS, PAVED AREAS OR DRIVEWAYS.

24. THE SEDIMENT RETENTION BASINS (SD) 6-4 SHALL:-

- a. BE CONSTRUCTED WHERE SHOWN ON THE PLANS.
- b. BE FLOCCULATED (APPENDIX E MANAGING URBAN STORMWATER SOILS & CONSTRUCTION 4TH ED.) BEFORE DISCHARGE OCCURS (UNLESS THE DESIGN STORM EVENT IS EXCEEDED)
- c. HAVE ONE OR MORE PEGS PLACED ON THE FLOOR TO CLEARLY INDICATE THE LEVEL AT WHICH DESIGN CAPACITY OCCURS AND WHEN SEDIMENT SHALL BE REMOVED.

25. STORED CONTENTS OF THE BASINS SHALL BE TREATED WITH GYPSUM (APPENDIX E MANAGING URBAN STORMWATER SOILS & CONSTRUCTION 4TH ED.) OR OTHER FLOCCULATING AGENTS WHERE THEY CONTAIN MORE THAN 50mg/litre OF SUSPENDED SOLIDS. TREATMENT SHALL BE AS FOLLOWS:-

- a. LOWER SUSPENDED SOLIDS TO LESS THAN 50mg/litre WITHIN 24hrs OF FILLING
- b. THE BASINS SHALL THEN BE ALLOWED TO STAND 36 TO 48hrs FOR FLOCCULATED PARTICLES TO SETTLE c. THE BASINS SHALL THEN BE DRAINED SO THAT FULL STORAGE CAPACITY IS REGAINED WITHOUT d. DISCHARGING SEDIMENT FROM THE SITE.

26. SEDIMENT REMOVED FROM ANY TRAPPING DEVICE SHALL BE DISPOSED IN LOCATIONS WHERE FURTHER EROSION AND CONSEQUENT POLLUTION TO DOWNSLOPE LANDS AND WATERWAYS SHALL NOT OCCUR.

27. WATER SHALL BE PREVENTED FROM DIRECTLY ENTERING THE PERMANENT DRAINAGE SYSTEM UNLESS IT IS RELATIVELY SEDIMENT FREE (ie THE CATCHMENT HAS BEEN LANDSCAPED AND/OR ANY LIKELY SEDIMENT HAS BEEN TREATED IN AN APPROVED DEVICE) NEVERTHELESS STORMWATER INLETS SHALL BE PROTECTED (SD) 6-11 & 6-12.

28. TEMPORARY SOIL AND WATER MANAGEMENT STRUCTURES SHALL BE REMOVED ONLY AFTER THE LANDS THEY ARE PROTECTING ARE STABILISED.

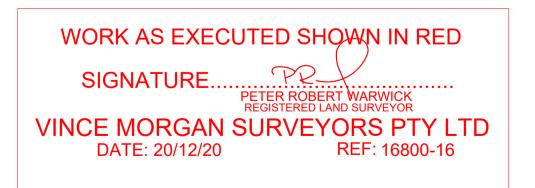
29. ACCEPTABLE BINS SHALL BE PROVIDED FOR ANY CONCRETE AND MORTAR SLURRIES, PAINTS, ACID WASHINGS, LIGHTWEIGHT WASTE MATERIALS AND LITTER. CLEARANCE SERVICES SHALL BE PROVIDED AT LEAST ONCE A WEEK.

STOCKPILE NOTES:

2.

1. SPOIL AND TOPSOIL STOCKPILES SHALL BE LOCATED AWAY FROM DRAINAGE LINES AND AREAS WHERE WATER MAY CONCENTRATE.

FOLLOWING CONSTRUCTION, TOPSOIL SHALL BE RESPREAD TO A MINIMUM DEPTH OF 100mm ON THE BARE SOIL SURFACES AND REVEGETATED.


SEDIMENTATION CONTROL DEVICES

ALL STRAW BALES SHALL BE BOUND WITH WIRE. STRAW BALES SHALL BE PLACED END TO END IN A SINGLE ROW AND EMBEDDED INTO THE SOIL TO A DEPTH OF 100mm. EACH BALE SHALL BE SECURELY ANCHORED WITH TWO STEEL STAKES DRIVEN 450mm INTO THE GROUND AND LOCKED ON THE BALE CENTRELINE.

SILT FENCES SHALL BE CONSTRUCTED BY STRETCHING A FILTER FABRIC (PROPEX OR SIMILAR) BETWEEN POSTS AT 2.5m CENTRES. FABRIC SHALL BE BURIED 150mm ALONG IT'S LOWER EDGE.

3. PROVIDE STRIP OF TURF MIN. 300mm WIDE BEHIND KERB + 1m WIDE AROUND ALL SURFACE INLET PITS

4. TEMPORARY SEDIMENT RETENTION BASIN AND TRAPS CAN BE DECOMMISSIONED AFTER THE WORK FOR WHICH THEY WERE DESIGNED ARE COMPLETED AND FULLY STABILISED ON MORE THAN 90% OF CONTRIBUTING CATCHMENT.

SITE INSPECTION AND MAINTENANCE

- 1. A SELF-AUDITING PROGRAM SHALL BE ESTABLISHED BASED ON A CHECK SHEET. A SITE INSPECTION USING THE CHECK SHEET SHALL BE MADE BY THE SITE SUPERVISOR / PROJECT MANAGER-:
- a. AT LEAST WEEKLY
- b. IMMEDIATELY BEFORE SITE CLOSURE c. IMMEDIATELY FOLLOWING RAINFALL EVENTS IN EXCESS OF 5mm IN ANY 24hr PERIOD.
- THE SELF AUDIT SHALL INCLUDE:-
- a. RECORDING THE CONDITION OF EVERY 'BEST MANAGEMENT PRACTICE' EMPLOYED
- c. RECORDING THE VOLUMES OF SEDIMENT REMOVED FROM SEDIMENT RETENTION SYSTEMS WHERE APPLICABLE
- d. RECORDING THE SITE WHERE SEDIMENT IS DISPOSED e. FORWARDING A SIGNED DUPLICATE OF THE COMPLETED CHECK SHEET TO THE PROJECT MANAGER/DEVELOPER FOR THEIR INFORMATION.
- 2. IN ADDITION A SUITABLY QUALIFIED PERSON SHALL BE RESPONSIBLE FOR OVERSEEING THE INSTALLATION AND MAINTENANCE OF ALL SOIL AND WATER MANAGEMENT WORKS ON THE SITE. THE PERSON SHALL BE **REQUIRED TO SPEND A MINIMUM OF:-**
- a. 2hrs ONSITE EACH FORTNIGHT UP UNTIL COMPLETION OF ROAD AND DRAINAGE WORKS AND/OR THE COMMISSIONING OF SEDIMENT BASIN(S)/WATER QUALITY CONTROL FACILITIES, AND DURING THE DECOMMISSIONING OF SAME AND/OR FINAL SITE STABILISATION. TO PROVIDE A SHORT MONTHLY WRITTEN REPORT.

THE RESPONSIBLE PERSON SHALL ENSURE THAT:-

- a. THIS PLAN IS BEING IMPLEMENTED CORRECTLY
- b. REPAIRS ARE BEING UNDERTAKEN AS REQUIRED
- c. ESSENTIAL MODIFICATIONS TO THIS PLAN ARE BEING MADE IF AND WHEN NECESSARY, EACH REPORT SHALL CERTIFY THAT WORKS HAVE BEEN CARRIED OUT ACCORDING TO THE APPROVED PLANS.
- 3. WASTE BINS SHALL BE EMPTIED AS NECESSARY, DISPOSAL OF WASTE SHALL BE IN A MANNER APPROVED BY THE SITE SUPERINTENDENT
- 4. PROPER DRAINAGE OF THE SITE SHALL BE MAINTAINED. DRAINS (INCLUDING INLET AND OUTLET WORKS) SHALL BE CHECKED TO ENSURE THAT THEY ARE OPERATING AS INTENDED, ESPECIALLY THAT:-
- a. AREAS OF EROSION ARE REPAIRED (e.g LINED WITH SUITABLE MATERIAL) AND/OR VELOCITY OF FLOW IS REDUCED APPROPRIATELY THROUGH CONSTRUCTION OF SMALL CHECK DAMS OR INSTALLING ADDITIONAL DIVERSIONS UPSLOPE
- b. BLOCKAGES ARE CLEARED (THESE MIGHT OCCUR BECAUSE OF SEDIMENT POLLUTION, SAND/SOIL/SPOIL BEING DEPOSITED IN OR TOO CLOSE TO THEM, BREACHED BY VEHICLE WHEELS etc)
- 5. SAND/SOIL/SPOIL MATERIALS PLACED CLOSER THAN 2m FROM HAZARD AREAS SHALL BE REMOVED SUCH HAZARD AREAS INCLUDE ANY AREAS OF HIGH VELOCITY WATER FLOWS (eg WATERWAYS AND GUTTERS) PAVED AREAS AND DRIVEWAYS.
- 6. RECENTLY STABILISED LANDS SHALL BE CHECKED TO ENSURE THAT THE EROSION HAZARD HAS BEEN EFFECTIVELY REDUCED. ANY REPAIRS SHALL BE INITIATED AS APPROPRIATE.
- EXCESSIVE VEGETATIVE GROWTH SHALL BE CONTROLLED THROUGH MOWING OR SLASHING.
- 8. ALL SEDIMENT DETENTION SYSTEMS SHALL BE KEPT IN GOOD WORKING CONDITION. IN PARTICULAR ATTENTION SHALL BE GIVEN TO:-
- a. RECENT WORKS TO ENSURE THAT THEY HAVE NOT RESULTED IN DIVERSION OF SEDIMENT LADEN WATER AWAY FROM THEM.
- b. DEGRADABLE PRODUCTS TO ENSURE THAT THEY ARE REPLACED AS REQUIRED c. SEDIMENT REMOVAL TO ENSURE THE DESIGN CAPACITY OR LESS REMAINS IN THE SETTLING ZONE
- ADDITIONAL EROSION AND/OR SEDIMENT CONTROL WORKS SHALL BE INSTALLED AS MIGHT BECOME NECESSARY TO ENSURE THE DESIRED PROTECTION IS GIVEN TO DOWNSLOPE LANDS AND WATERWAYS (ie MAKE ONGOING CHANGES TO THIS PLAN WHERE IT PROVES INADEQUATE IN PRACTICE OR IS SUBJECTED TO CHANGES IN CONDITIONS AT THE WORKS SITE OR ELSEWHERE IN THE CATCHMENT.
- 10. EROSION AND SEDIMENT CONTROL MEASURES SHALL BE MAINTAINED IN A FUNCTIONING CONDITION UNTIL ALL EARTHWORKS ACTIVITIES ARE COMPLETED AND THE SITE STABILISED.
- WATERS IN SEDIMENT RETENTION BASIN(S) THAT OCCUPY MORE THAN 1/4 OF THE DESIGN CAPACITY DURING THAT STAGE OF THE WORKS UP UNTIL COMMISSIONING OF THE BASIN(s) SHALL BE:-

11

- a. TREATED WITH A FLOCCULATING AGENT (APPENDIX E MANAGING URBAN STORMWATER SOILS & CONSTRUCTION 4TH ED.)
- b. DISCHARGED WITHIN 5 days FROM THE CONCLUSION OF ANY STORM EVENT LARGE ENOUGH TO FILL THE BASIN TO THAT LEVEL

a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.

		CLIENT:	
		N R E D B A N K	ISSUE
MPRINCE CONSULTING CIVIL INFRASTRUCTURE ENGINEERS & PROJECT MANAGERS	AZIMUTH: DATUM:	NORTH RICHMOND	S REDBA
PO Box 4366 PENRITH WESTFIELD NSW 2750 F 02 4720 3399 W <u>www.jwprince.com.au</u> E jwp@jwprince.com.au	ORIGIN:	THIS DRAWING MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS PART OF AN APPROVED CONSTRUCTION CERTIFICATE.	SOIL &

b. RECORDING MAINTENANCE REQUIREMENTS (IF ANY) FOR EACH 'BEST MANAGEMENT PRACTICE'

SUBDIVISION WORKS CERTIFICATE

Certificate No. Date of Issue **Issuing Officer**

20130299SW51 28/08/2020 D. Restr

BDC3367

Accreditation No.

These plans/specifications form part of the certificate issued 28th of August 2020

ED FOR CONSTRUCTION APPROVAL

SANDSTONE ARCH ANK, NORTH RICHMOND WATER MANAGEMENT NOTES

11018512/CC220 2

FILE No: 11018512CC220 SHEET SIZE: A1 ORIGINAL

Note: These "De	tailed Calculation" spreadsheets relate only to high erosion hazard lands as identified in figure
4.6 or where the o	designer chooses to use the RUSLE to size sediment basins. The "Standard Calculation"
spreadsheets sho	ould be used on low erosion hazard lands as identified by figure 4.6 and where the designer
chooses not to ru	n the RUSLE in calculations.

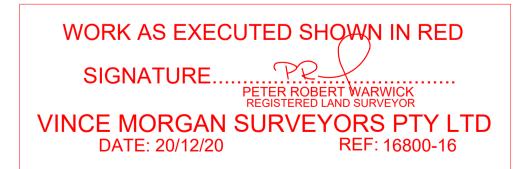
Site Name:	Redbank, Southern Valley North Richmond				
Site Location:					
Precinct:	Sandstone Arch Subdivision				
Description of Site:	Sandstone Arch Subdivision				
		Sub-catchment			
Site area	BASIN 1				
Total catchment area (ha)	2.21				
Disturbed catchment area (ha)	2.21				
Soil analysis (enter sediment	type if kno	wn, or laboratory p			
Sediment Type (C, F or D) if known:	F				
% sand (fraction 0.02 to 2.00 mm)	33				
% silt (fraction 0.002 to 0.02 mm)	33				
% clay (fraction finer than 0.002 mm)	33				
Dispersion percentage	10.0				
% of whole soil dispersible	4.95				
Soil Texture Group	F				
Rainfall data					
Design rainfall depth (days)	5				
Design rainfall depth (percentile)	85				
x-day, y-percentile rainfall event	29.5				
Rainfall R-factor (if known)	2500				
IFD: 2-year, 6-hour storm (if known)	12.08				
RUSLE Factors					
Rainfall erosivity (<i>R</i> -factor)	2500				
Soil erodibility (K -factor)	0.03				
Slope length (m)	30				
Slope gradient (%)	4				
Length/gradient (LS -factor)	0.54				
Erosion control practice (P-factor)	1.3				
Ground cov er (C -factor)	1.5				
Calculations					
	53				
	53 1				
Calculations Soil loss (t/ha/y r) Soil Loss Class Soil loss (m ³ /ha/y r)					

1 August , 20								J. WYNDHA
tted: 2	1	CERTIFIERS COMMENTS ADDRESSED	MP	NDW	MS	DF	21/08/20	P 02 4720 330
		AMENDMENT	DES	DRN	CKD	APR	DATE	

ent basins. Th	d lands as identified in figure e "Standard Calculation" 6 and where the designer
	Remarks
ticle size data)
	From Appendix C
	Soil texture should be assessed through
	mechanical dispersion only. Dispersing
	agents (e.g. Calgon) should not be used
	E.g. enter 10 for dispersion of 10%
	See Section 6.3.3(e). Auto-calculated
	Automatic calculation from above
	See Sections 6.3.4 (d) and (e)
	See Sections 6.3.4 (f) and (g)
	See Section 6.3.4 (h)
	See Appendix B
	See IFD chart for the site
	Auto-filled from above
	-
	RUSLE LS factor calculated for a high
	rill/interrill ratio.
	4
	See Section 4.4 2/h)
	See Section 4.4.2(b)
	See Sections 6.3.4(i) and 6.3.5 (e)
	566 Sections 0.5.4(1) and 0.5.5 (8)

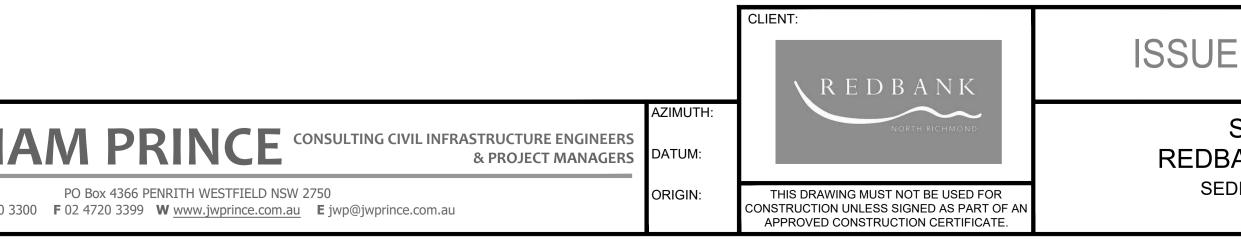
4. Volume of Sediment Basins, Type D and Type F Soils

Basin volume = settling zone volume + sediment storage zone volume


Settling Zone Volume

The settling zone volume for Type F and Type D soils is calculated to provide capacity to contain all runoff expected from up to the y-percentile rainfall event. The volume of the basin's settling zone (V) can be determined as a function of the basin's surface area and depth to allow for particles to settle and can be determined by the following equation:

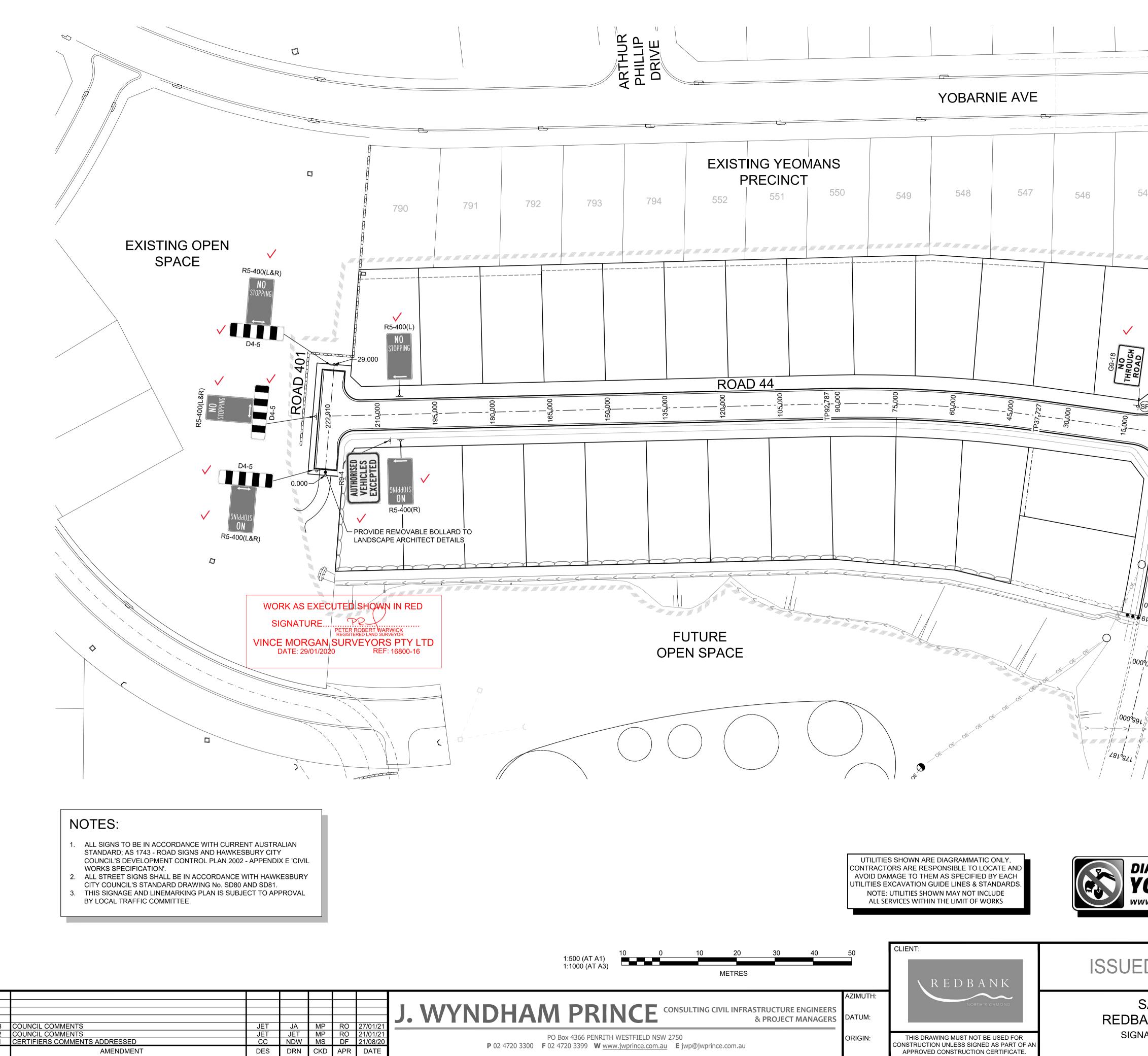
V =	10 x C _v x A x R _{x-day, y}	wm (m ³)	
	TO A OV A A A TX-day, y.	-%ile (111)	
where:			
10 =	a unit conversion factor		
C _v =	the volumetric runoff coe as that portion of rainfall stormwater over the x-da	I that runs off as	
R _{x-day, y-%ile} =	is the x-day total rainfall that is not exceeded in rainfall events. (See Se (e), (f), (g) and (h)).	y percent of	
A =	total catchment area (ha	a)	
Sediment Storage Zone		lands the andiment stores a	ana aan ba
In the detailed calculation on S taken as 50 percent of the set	tling zone capacity. Alte	그가 잘 많다. 한 것 같아요. 그 것 같아요. 같이 같아요. 가지 않는 것 같아. 한 것 같아요. 것 같아요. 것 같아요. 것 같아. 것 같아요. 같아요. 것 같아요. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	the zone to stor


the 2-month soil loss as calculated by the RUSLE (Section 6.3.4(i)(ii)). However, on Soil Loss Classes 5, 6 and 7 lands, the zone must contain the 2-month soil loss as calculated by the RUSLE (Section 6.3.4(i)(iii).

Place an "	x X	50% of se	ettling zone	capacity			
Total Ba	asin Vo	olume					
Site	Cv	R _{x-day, y-%ile}	T otal catchment area (ha)	Settling zone volume (m ³)	Sediment storage volume (m ³)	Total basin volume (m ³)	
BASIN 1	0.50	29.5	2.21	326	163	489	

a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

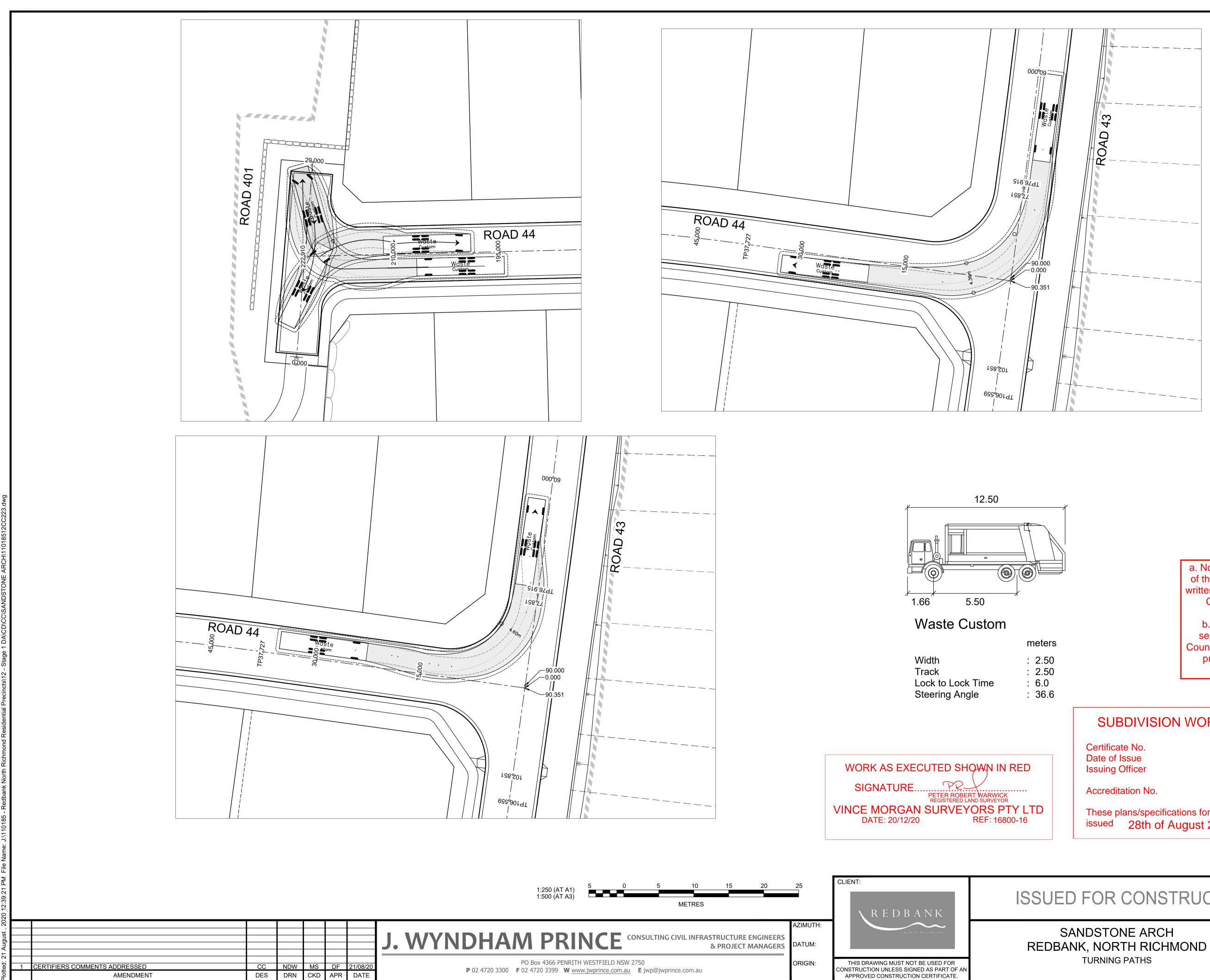
b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.



SANDSTONE ARCH REDBANK, NORTH RICHMOND SEDIMENT BASIN CALCULATIONS

PLAN No: 11018512/CC221 1

FILE No: 11018512CC221


SHEET SIZE:

							-	
								\mathbf{N}
							Jo	VVI
3	COUNCIL COMMENTS	JET	JA	MP	RO	27/01/21		
2	COUNCIL COMMENTS	JET	JET	MP		21/01/21		
1	CERTIFIERS COMMENTS ADDRESSED	CC	NDW	MS	DF	21/08/20		
	AMENDMENT	DES	DRN	CKD	APR	DATE		

000°0 REVINE ROAD IDENTIFY OF THE INFORMATION 	FUTURE		
G9-18 GVOU HONOUHL ON GVOU GVOU GVOU GVOU GVOU GVOU GVOU GVOU			
000°ςει μ9°8ει Οσει μ ΩΟστ μ Οσει μ Οσει μ Οσει μ Οσει μ Οσει μ Οσει μ Οσει μ Οσει μ Οσει Α Οσει Οσει Οσει Οσει Οσει Οσει Οσει Οσει			
AL BEFORE OU DIG w.1100.com.au	VICINITY. E CAUTION D CONTACT "	OUND SERVICE CABLES IN XERCISE EXTREME JRING EXCAVATION. DIAL BEFORE YOU DIG" NY CONSTRUCTION WOF	
ANDSTONE ARCH NK, NORTH RICHMC	DND	APPROVA PLAN NO: 11018512/C0 FILE No: 11018512CC	C222 3

SHEET SIZE:

AMENDMENT

DES DRN CKD APR DATE

a. No works are to occur outside of the property boundary unless written approval from Hawkesbury Council has be received.

b. All landscaping requires separate formal approval by Council or an Accredited Certifier, prior to commencement of landscaping works.

SUBDIVISION WORKS CERTIFICATE

20130299SW51 28/08/2020 D. Restr BDC3367

These plans/specifications form part of the certificate issued 28th of August 2020

ISSUED FOR CONSTRUCTION APPROVAL

PLAN No: 11018512/CC223 1

FILE No: 11018512CC223

SHEET SIZE: